1887
Volume 22 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

In the northern Calabrian margin offshore, the Paola Ridge, seaward from the 700 m deep Paola intraslope basin, tops at a depth of around 600 m. Multibeam bathymetry, seafloor reflectivity and seismic data are available. The Paola Ridge consists of circular or elongated ridges cored by a transparent seismic facies that are interpreted as mud diapirs. The diapirs have radius in the order of 5 km and elevate on average 200 m from the adjacent seafloor. The elongated shape of the diapirs is an evidence of a tectonic influence on the pathways exploited by the rising structures. The most recent seismic unit drapes the topographic relief associated with the diapirs showing that diapir rise is at present mainly quiescent. Pockmarks fields and evidence of gas charged sediments are due to degassing from the inactive diapirs. Two mud volcanoes, shown by high backscatter mud flows fed from circular high backscatter areas centred by a collapse feature, are also present on top of one of the dormant diapirs. The only diapir that is actively rising and deforming the seafloor is not associated with pockmarks. Thus, a relationship between fluid expulsion from the diapiric mass and the arrest of the diapir rise is apparent. The increased seafloor steepness due to diapir rise and the presence of gas within the sedimentary succession promotes sediment instability as shown by a thick slump deposit and numerous mass‐wasting scars. Sometimes, the diapirs rise in coincidence with extensional faults that offset the Messinian evaporites. The mud remobilization structures are located along a NW–SE trending belt characterized by active extensional faulting. Hence, genetic processes similar to many of the mud diapir and volcano provinces of the Mediterranean, consisting of pre‐Messinian source rocks mobilized along discrete belts of active tectonic deformation, is advanced as controlling the setting of the study area.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00473.x
2010-04-01
2024-03-28
Loading full text...

Full text loading...

References

  1. Akhmanov, G.G., Premoli Silva, I., Erba, E. & Cita, M.B. (2003) Sedimentary succession and evolution of the Mediterranean Ridge western sector as derived from lithology of mud breccia clasts. Mar. Geol., 195, 277–299.
    [Google Scholar]
  2. Argnani, A. & Trincardi, F. (1988) Paola Slope basin: evidence of regional contraction on the eastern Tyrrhenian margin. Mem. Soc. Geol. It., 44, 93–105.
    [Google Scholar]
  3. Argnani, A. & Trincardi, F. (1993) Growth of a slope ridge and its control on sedimentation; Paola slope basin (eastern Tyrrhenian margin). IAS Spec. Publ., 20, 467–480.
    [Google Scholar]
  4. Brown, K.M. (1990) The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J. Geophys. Res., 95, 8969–8982.
    [Google Scholar]
  5. Camerlenghi, A. & Pini, G.A. (2009) Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region. Sedimentology, 56, 1, 319–365.
    [Google Scholar]
  6. Capozzi, R. & Picotti, V. (2002) Fluid migration and origin of a mud volcano in the Northern Apennines (Italy): the role of deeply rooted normal faults. Terra Nova, 14, 363–370.
    [Google Scholar]
  7. Casas, D., Ercilla, G. & Baraza, J. (2003) Acoustic evidences of gas in the continental slope sediments of the Gulf of Cadiz (E Atlantic). Geo-Mar. Lett., 23, 300–310.
    [Google Scholar]
  8. Chamot‐Rooke, N., Rabaute, A. & Kreemer, C. (2005) Western Mediterranean Ridge mud belt correlates with active shear strain at the prism‐backstop geological contact. Geology, 33, 861–864.
    [Google Scholar]
  9. D'Agostino, N. & Selvaggi, G. (2004) Crustal motion along the Eurasia‐Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements. J. Geophys. Res., 109, B11402, doi: DOI: 10.1029/2004JB002998.
    [Google Scholar]
  10. De Mets, C., Gordon, R.G., Argus, D.F. & Stein, S. (1990) Current plate motions. Geophys. J. Int., 101, 425–478.
    [Google Scholar]
  11. Dewey, J.F., Helman, M.L., Turco, E., Hutton, D.H.W. & Knott, S.D. (1989) Kinematics of the western Mediterranean. In: Alpine Tectonics (Ed. by M.P.Coward & D.Dietrich ), Geol. Soc. Spec. Publ., 45, 265–283.
    [Google Scholar]
  12. Dupré, S., Woodside, J., Foucher, J.‐P., De Lange, G., Mascle, J., Boetius, A., Mastalerz, V., Stadnitskaia, A., Ondreas, H.E., Huguen, C., Gnies, F.H., Gontharet, S., Loncke, L., Deville, E., Niemann, H., Omoregie, E., Roy, K.O., Fiala‐Medion, A., Dahlmann, A., Caprais, J.‐C., Prinzhofer, A., Sibuet, M., Pierre, C. & Damsté, J.S.& the Nautinil Scientific Party (2007) Seafloor geological studies above active gas chimneys off Egypt (Central Nile Deep Sea Fan). Deep-Sea Res. I, 54, 1146–1172.
    [Google Scholar]
  13. Fabbri, A. & Curzi, P. (1979) The Messinian of Tyrrhenian Sea: seismic evidence and dynamic implications. Giornale Geol., 43, 215–248.
    [Google Scholar]
  14. Fabbri, A., Gallignani, P. & Zitellini, N. (1981) Geological evolution of the peri‐Tyrrhenian sedimentary basins. In: Sedimentary Basins of Mediterranean Margin (Ed. by F.C.Wezel ), pp 101–126. Tecnoprint, Bologna.
    [Google Scholar]
  15. Fusi, N., Savini, A. & Corselli, C. (2006) Evidence of mud diapirism and coral colonies in the Ionian Sea (Central Mediterranean) from high resolution chirp sonar survey. Ann. Geophys., 49, 751–765.
    [Google Scholar]
  16. Gallignani, P. (1982) Recent sedimentation processes on the Calabria continental shelf and slope (Tyrrhenian Sea, Italy). Oceanol. Acta, 5 (4), 493–500.
    [Google Scholar]
  17. Gamberi, F. & Marani, M.P. (2004) Deep‐sea depositional systems of the Tyrrhenian Basin. In: From Seafloor to Deep Mantle: Architecture of the Tyrrhenian Backarc Basin (Ed. by M.Marani , F.Gamberi & E.Bonatti ), Mem. Desc. Carta Geol. d'It., 64, 127–146.
    [Google Scholar]
  18. Gibson, R., Meisling, K. & Bhajan, J. (2006) Tectonically‐driven Plio‐Pleistocene structural development of the Columbus Basin, offshore Trinidad, West Indies. In: APG/GSTT HEDBERG CONFERENCE Mobile Shale Basins – Genesis, Evolution and Hydrocarbon Systems, June 4–7, – Port of Spain, Trinidad & Tobago.
  19. Guarnieri, P. (2006) Plio‐Quaternary segmentation of the south Tyrrhenian forearc basin. Int. J. Earth Sci., 95, 107–118.
    [Google Scholar]
  20. Hampton, M.A., Lee, H.J. & Locat, J. (1996) Submarine landslides. Rev. Geophys., 34 (1), 33–59.
    [Google Scholar]
  21. Hansen, J.P.V., Cartwright, J.A., Huuse, M. & Clausen, O.R. (2005) 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid‐Norway. Basin Res., 17 (1), 123–139.
    [Google Scholar]
  22. Henry, P., Le Pichon, X., Lallemant, S., Lance, S., Martin, J.B., Foucher, J.‐P., Fiala‐Medioni, A., Rostek, F., Guilhaumou, N., Pranal, V. & Castrec, M. (1996) Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge, results from Manon cruise. J. Geophys. Res., 101, 20297–20323.
    [Google Scholar]
  23. Huguen, C., Mascle, J., Woodside, J., Zitter, T. & Foucher, J.P. (2005) Mud volcanoes and mud domes of the Central Mediterranean Ridge: near-bottom and in situ observations. Deep‐Sea Res. I, 52, 1911–1931.
    [Google Scholar]
  24. Jackson, M.P.A. & Vendeville, B.C. (1994) Regional extension as a geologic trigger for diapirism. GSA Bull., 106, 57–73.
    [Google Scholar]
  25. Judd, A. & Hovland, M. (2007) Seabed Fluid Flow – The Impact on Geology, Biology, and the Marine Environment. Cambridge University Press, Cambridge.
    [Google Scholar]
  26. Kastens, K.A., Mascle, J., Auroux, C., Bonatti, E., Broglia, C., Channell, J., Curzi, P., Emeis, K.C., Glacon, G., Hasegana, S., Hieke, W., Mccoy, F., Mckenzie, J., Mascle, G., Mendelson, J., Müller, C., Rehault, J.‐P., Robertson, A., Sartori, R., Sprovieri, R. & Torii, M. (1990) The geological evolution of the Tyrrhenian Sea: an introduction to the scientific results of ODP Leg 107. In: Proceedings of the ODP. Scientific Results (Ed. by K.A.Kastens & J.Mascle , et al.), 107, 3–26. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  27. Kopf, A. (2002) Significance of mud volcanism. Rev. Geophys., 40, 1–51.
    [Google Scholar]
  28. Lastras, G., Canals, M., Urgeles, R., Hughes‐Clarke, J.E. & Acosta, J. (2004) Shallow slides and pockmark swarms in the Eivissa Channel, western Mediterranean Sea. Sedimentology, 51, 837–850.
    [Google Scholar]
  29. Liberi, F., Morten, L. & Piluso, E. (2006) Geodynamic significance of ophiolites within the Calabrian. Arc Island Arc, 15, 26–43.
    [Google Scholar]
  30. Loncke, L. & Mascle, J.& Fanil Scientific Party (2004) Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep‐sea fan (Eastern Mediterranean): geophysical evidences. Mar. Petrol. Geol., 21, 669–689.
    [Google Scholar]
  31. Ludmann, T. & Wong, H.K. (2003) Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk. Mar. Geol., 201, 269–286.
    [Google Scholar]
  32. Malinverno, A. & Ryan, W.B.F. (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by slab sinking in the lithosphere. Tectonics, 5, 227–245.
    [Google Scholar]
  33. Mattei, M., Cifelli, F. & D'Agostino, N. (2007) The evolution of the Calabrian Arc: evidence from paleomagnetic and GPS observations. Earth Planet. Sci. Lett., 263, 259–274.
    [Google Scholar]
  34. Mienert, J., Dowdeswell, J.A. & Taylor, J. (2003) The Håkon Mosby Mud volcano. In: European Margin Sediment Dynamics: Side‐Scan Sonar and Seismic Images (Ed. by J.Mienert & P.Weaver ), pp. 119–122. Springer‐Verlag, Berlin Heidelberg, New York.
    [Google Scholar]
  35. Milkov, A.V. (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 167, 29–42.
    [Google Scholar]
  36. Morley, C.K. (2003) Mobile shale related deformation in large deltas developed on passive and active margins. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Lond. Spec. Publ., 216, 475–490.
    [Google Scholar]
  37. Morley, C.K. & Guerin, G. (1996) Comparison of gravity‐driven deformation styles and behavior associated with mobile shales and salt. Tectonics, 15 (6), 1154–1170.
    [Google Scholar]
  38. Nicolosi, I., Speranza, F. & Chiappini, M. (2006) Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: evidence from magnetic anomaly analysis. Geology, 34 (9), 717–720.
    [Google Scholar]
  39. Osborne, M.J. & Swarbrick, R.E. (1997) Mechanisms for generating overpressure in sedimentary basins; a reevaluation. AAPG Bull., 81 (6), 1023–1041.
    [Google Scholar]
  40. Rabaute, A. & Chamot‐Rooke, N. (2007) Quantitative mapping of active mud volcanism at the western Mediterranean Ridge‐backstop contact. Mar. Geophys. Res., 28, 271–295.
    [Google Scholar]
  41. Sautkin, A., Talukder, A.R., Comas, M.C., Soto, J.I. & Alekseev, A. (2003) Mud volcanoes in the Alboran Sea: evidence from micropaleontological and geophysical data. Mar. Geol., 195, 237–261.
    [Google Scholar]
  42. Scandone, P. (1979) Origin of the Tyrrhenian Sea and Calabrian Arc. Boll. Soc. Geol. It., 98, 27–34.
    [Google Scholar]
  43. Scandone, P. (1982) Structure and evolution of the Calabrian Arc. Earth Evol. Sci., 2 (3), 172–180.
    [Google Scholar]
  44. Somoza, L., Diaz‐Del‐Rio, V., Leon, R., Ivanov, M., Fernandez‐Puga, M.C., Gardner, J., Hernandez‐Molina, F.J., Pinheiro, L.M., Rodero, J., Lobato, A., Maestro, A., Vazquez, J.T., Medialdea, T. & Fernandez‐Salas, L.M. (2003) Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: acoustic imagery, multi-beam and ultra-high resolution seismic data. Mar. Geol., 195, 153–176.
    [Google Scholar]
  45. Sumner, R.H. & Westbrook, G.K. (2001) Mud diapirism in front of the Barbados accretionary wedge: the influence of fracture zones and North America–South America plate motions. Mar. Petrol. Geol., 18, 591–613.
    [Google Scholar]
  46. Talukder, A.R., Comas, M.C. & Soto, J.I. (2003) Pliocene to Recent mud diapirism and related mud volcanoes in the Alboran Sea (Western Mediterranean). In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Lond. Spec. Publ., 216, 443–459.
    [Google Scholar]
  47. Tripsanas, E.K., Bryant, W.R. & Phaneuf, B.A. (2004) Slope‐instability processes caused by salt movements in a complex deep‐water environment, Bryant Canyon area, northwest Gulf of Mexico. AAPG Bull., 88 (6), 801–823.
    [Google Scholar]
  48. Van Rensbergen, P. & Morley, C.K. (2003) Re‐evaluation of mobile shale occurrences on seismic sections of the Champion and Baram deltas, offshore Brunei. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Lond. Spec. Publ., 216, 395–409.
    [Google Scholar]
  49. Van Rensbergen, P., Morley, C.K., Ang, D.W., Hoan, T.Q. & Lam, N.T. (1999) Structural evolution of shale diapirs from reactive rise to mud volcanism: 3D seismic data from the Baram delta offshore Brunei Darussalam. J. Geol. Soc. Lond., 156, 633–50.
    [Google Scholar]
  50. Vendeville, B.C. (2005) Similarities and differences between salt and shale tectonics. Geoph. Res. Abstracts, 7, 0357.
  51. Vogt, P.R., Cherkashev, G., Ginsburg, G., Ivanov, G., Milkov, A., Crane, K., Lein, A., Sundvor, E., Pimenov, N. & Egorov, A. (1997) Håkon Mosby mud volcano provides unusual example of venting. Eos, Trans., AGU, 78, 549, 556–557.
    [Google Scholar]
  52. Weimer, P. & Slatt, R.M. (2004) The petroleum systems of deepwater setting. SEG Distinguished Instructor Short Course Book, 7, 300pp.
  53. Woodside, J.M., Ivanov, M.K. & Limonov, A.F. (1997) Neotectonics and fluid flow through seafloor sediments in the eastern Mediterranean and Black seas. Serie Technique – UNESCO, Commission Oceanographique Intergouvernementale, 48(II), 90pp.
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00473.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00473.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error