1887
Volume 23, Issue 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The Tian Shan range formed in the late Cenozoic in response to the northward propagation of deformation related to the India–Eurasia continental collision. Precise timing of the Tian Shan uplift is required to understand possible mechanisms of continental lithosphere deformation and interactions between climate, tectonism and erosion. Here, we provide magnetostratigraphic age control on the northern Chinese Tian Shan foreland successions. A thorough rock magnetic analysis identifies haematite‐ and magnetite‐bearing alluvial fan deposits in the upper portion of the sampled strata as more reliable palaeomagnetic recorders than magnetite‐bearing fluvial and lacustrine deposits that are often maghaemitized in the lower part of the record. As a result, a robust correlation to the geomagnetic polarity time scale is obtained from 6 to 2 Ma while a tentative correlation is proposed from 6 to 16 Ma. Sediment accumulation rates increase from 155 to 260 m Myr−1 at 3.9±0.3 Ma. This change coincides with a gradual lithologic transition from fluvial (sandstone‐dominated) to alluvial fan (conglomerate‐dominated) deposits that likely records an approaching erosional source related to tectonically increased subsidence rather than differential compaction. Clear evidence for growth strata starting at an estimated age of ∼2 Ma provides a minimum age for folding. These results are compared with previous magneotstratigraphic studies from the same and other sections of the northern Tian Shan foreland basin fill, thus enabling a critical assessment of the reliability of magnetostratigraphic dating and the significance of sediment accumulation rate variations with respect to facies variations and growth strata. Our results in the Taxi He section provide a sequence of events that is consistent with enhanced tectonic forcing starting at ∼4 Ma, although a climatic contribution must be considered given the close relationship of these ages with the Pliocene climate deterioration.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00475.x
2011-01-19
2024-04-25
Loading full text...

Full text loading...

References

  1. Abdrakhmatov, K., Aldazhanov, S.A., Hager, B.H., Hamburger, M.W., Herring, T.A., Kalabaev, K.B., Makarov, V.I., Molnar, P., Panasyuk, S.V., Prilepin, M.T., Reilinger, R.E., Sadybakasov, I.S., Souder, B.J., Trapeznikov, Y.A., Tsurkov, V.Y. & Zubovich, A.V. (1996) Relatively recent construction of the Tien Shan inferred from GPS measurements of present day crustal deformation rates. Nature, 384, 450–453.
    [Google Scholar]
  2. Avouac, J.P. & Tapponnier, P. (1993) Kinematic model of active deformation in central Asia. Geophys. Res. Lett., 20, 895–898.
    [Google Scholar]
  3. Avouac, J.P., Tapponnier, P., Bai, M., You, H. & Wang, G. (1993) Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res., 98, 6755–6804.
    [Google Scholar]
  4. Bullen, M.E., Burbank, D.W., Garver, J.I. & Abdrakhmatov, K.Y. (2001) Late Cenozoic tectonic evolution of the northwestern Tien Shan: new age estimates for the initiation of mountain building. Geol. Soc. Am. Bull., 113, 1544–1559.
    [Google Scholar]
  5. Burchfiel, B.C., Brown, E.T., Deng, Q., Feng, X., Li, J., Molnar, P., Shi, J., Wu, Z. & You, H. (1999) Crustal shortening on the margins of the Tien Shan, Xinjiang, China. Int. Geol. Rev., 41, 665–700.
    [Google Scholar]
  6. Charreau, J., Avouac, J.‐P., Chen, Y., Dominguez, S.P. & Gilder, S. (2008a) Miocene to present kinematics of fault‐bend folding across the Huerguosi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data 10.1130/G25073A.1. Geology, 36, 871–874.
    [Google Scholar]
  7. Charreau, J., Chen, Y., Gilder, S. & Barier, L. (2008b) Comment on “Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China” Baochun Huang, John D.A. Piper, Shoutao Peng, Tao Liu, Zhong Li, Qingchen Wang, Rixiang Zhu [Earth Planet. Sci. Lett., 2006, doi:DOI: 10.1016/j.epsl.2006.09.020]. Earth Planet. Sci. Lett., 268, 325–329.
    [Google Scholar]
  8. Charreau, J., Chen, Y., Gilder, S., Barrier, L., Dominguez, S.P., Augier, R., Sen, S., Avouac, J.‐P., Gallaud, A., Graveleau, F. & Wang, Q. (2009a) Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics, 28, doi: DOI: 10.1029/2007TC002137.
    [Google Scholar]
  9. Charreau, J., Chen, Y., Gilder, S., Dominguez, S., Avouac, J.‐P., Sen, S., Sun, D., Li, Y. & Wang, W.‐M. (2005) Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshan mountains. Earth Planet. Sci. Lett., 230, 177–192.
    [Google Scholar]
  10. Charreau, J., Gilder, S., Chen, Y., Dominguez, S., Avouac, J.P., Sen, S. & Jolivet, M. (2006) Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tianshan Mountains. Geology, 34, 181–184.
    [Google Scholar]
  11. Charreau, J., Gumiaux, C., Avouac, J.‐P., Augier, R., Chen, Y., Barrier, L., Gilder, S., Dominguez, S., Charles, N. & Wang, Q. (2009b) The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan: climatic and tectonic implications. Earth Planet. Sci. Lett., 287, 298–310.
    [Google Scholar]
  12. Charreau, J., Sun, J., Chen, Y., Gilder, S., Huang, B. & Wang, Q. (2008c) Addendum to “Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian Shan Mountains” by Jimin Sun, Qinghai Xu, and Baochun Huang. J. Geophys. Res., 113, doi: DOI: 10.1029/2007JB005489.
    [Google Scholar]
  13. Chen, J., Heermance, R., Burbank, D.W., Scharer, K.M., Miao, J. & Wang, C. (2007) Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan. J. Geophys. Res. B: Solid Earth, 112, BO3516, doi: DOI: 10.1029/2006jb004345.
    [Google Scholar]
  14. Daëron, M., Avouac, J.‐P. & Charreau, J. (2007) Modeling the shortening history of a fault tip fold using structural and geomorphic records of deformation. J. Geophys. Res., 112, 1–19.
    [Google Scholar]
  15. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P. & Kapp, P.A. (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Geol. Soc. Am. Bull., 110, 2–21.
    [Google Scholar]
  16. DeCelles, P.G. & Giles, K.N. (1996) Foreland basin systems. Basin Res., 8, 115–153.
    [Google Scholar]
  17. Deng, Q.D., Feng, X.Y., Zhang, P.Z., Xu, X.W., Yang, X.P., Peng, S.Z. & Li, J. (2000) ActiveTectonics of theTian ShanMountains. Seismology Press, Beijing.
    [Google Scholar]
  18. Dunlop, D. & Özdemir, Ö. (1997) Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  19. Dunlop, D.J. (2002a) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107, 2056, doi: DOI: 10.1029/2001JB000486.
    [Google Scholar]
  20. Dunlop, D.J. (2002b) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res., 107, 2057, doi: DOI: 10.1029/2001JB000487.
    [Google Scholar]
  21. Dupont‐Nivet, G., Guo, Z., Butler, R.F. & Jia, C. (2002) Discordant paleomagnetic direction in Miocene rocks from the central Tarim Basin: evidence for local deformation and inclination shallowing. Earth Planet. Sci. Lett., 199, 473–482.
    [Google Scholar]
  22. Dupont‐Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S. & Fang, X. (2007) Tibetan plateau aridification linked to global cooling at the Eocene‐Oligocene transition. Nature, 445, 635–638.
    [Google Scholar]
  23. Fu, B., Lin, A., Kano, K.‐I., Maruyama, T. & Guo, J. (2003) Quaternary folding of the eastern Tian Shan, northwest China. Tectonophysics, 369, 79–101.
    [Google Scholar]
  24. Guo, Z., Wu, C., Zhang, Z., Fang, S.H. & Zhang, R. (2006) The Mesozoic and Cenozoic Exhumation History of Tianshan and Comparative Studies to the Junggar and Altai Mountains. Acta Geol. Sinica, 80, 1–15.
    [Google Scholar]
  25. Heermance, R.V., Chen, J., Burbank, D.W. & Wang, C. (2007) Chronology and tectonic controls of late tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Res., 19, 599–632.
    [Google Scholar]
  26. Hendrix, M.S., Dumitru, T.A. & Graham, S.A. (1994) Late Oligocene‐early Miocene unroofing in the Chinese Tian Shan: an early effect of the India-Asia collision. Geology, 22, 487–490.
    [Google Scholar]
  27. Hendrix, M.S., Graham, S.A., Carroll, A.R., Sobel, E.R., Mcknight, C.L., Schulein, B.J. & Wang, Z. (1992) Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geol. Soc. Am. Bull., 104, 53–79.
    [Google Scholar]
  28. Huang, B., Piper, J.D.A., Peng, S., Liu, T., Li, Z., Wang, Q. & Zhu, R. (2006) Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China. Earth Planet. Sci. Lett., 251, 346–364.
    [Google Scholar]
  29. Huang, B., Piper, J.D.A. & Zhu, R. (2008) Reply to the comment by J. Charreau et al. on “Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China” [Earth Planet. Sci. Lett., 2008, doi:DOI: 10.1016/j.epsl.2008.01.025].
  30. Hüsing, S.K., Kuiper, K.F., Link, W., Hilgen, F.J. & Krijgsman, W. (2009) The upper Tortonian‐lower Messinian at Monte dei Corvi (Northern Apennines, Italy): completing a Mediterranean reference section for the Tortonian Stage. Earth Planet. Sci. Lett., 282, 140–157.
    [Google Scholar]
  31. Jia, C., Wei, G., Wang, L., Jia, D. & Guo, Z. (1997) Tectonic Characteristics and Petroleum, Tarim Basin, China. Petroleum Industry Press, Beijing.
    [Google Scholar]
  32. Jolivet, M., Ritz, J.‐F., Vassallo, R., Larroque, C., Braucher, R., Todbileg, M., Chauvet, A., Sue, C., Arnaud, N., De Vicente, R., Arzhanikova, A. & Arzhanikov, S. (2007) Mongolian summits: an uplifted, flat, but still preserved erosion surface. Geology, 35, 871–874.
    [Google Scholar]
  33. Kirschvink, J.L. (1980) The least‐square line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astronom. Soc., 62, 699–718.
    [Google Scholar]
  34. Lourens, L.J., Hilgen, F.J., Laskar, J., Shackelton, N.J. & Wilson, D.S. (2004) The Neogene Period. In: A Geologic Time Scale 2004 (Ed. by F.M.Gradstein , J.G.Ogg & A.G.Smith ), pp. 409–440. Cambridge University Press, Cambridge.
    [Google Scholar]
  35. Lowrie, W. (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett., 17.
    [Google Scholar]
  36. Lu, H., Burbank, D.W., Li, Y. & Liu, Y. (in press) Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland. Basin Res., doi: DOI: 10.1111/j.1365-2117.2009.00412.x.
    [Google Scholar]
  37. McElhinny, M.W. (1964) Statistical significance of the fold test in paleomagentism. Geophys. J. Int., 8, 725–729.
    [Google Scholar]
  38. McFadden, P.L. (1990) A new fold test for palaeomagnetic studies. Geophys. J. Int., 103, 163–169.
    [Google Scholar]
  39. McFadden, P.L. & McElhinny, M.W. (1990) Classification of the reversals test in palaeomagnetism. Geophys. J. Int., 103, 725–729.
    [Google Scholar]
  40. Pan, Y., Zhu, R., Banerjee, S.K., Gill, J. & Williams, Q. (2000) Rock magnetic properties related to thermal treatment of siderite: behavior and interpretation. J. Geophys. Res., 105, 783–794.
    [Google Scholar]
  41. Peng, X.L. (1975) Cenozoic vertebrate localities and horizon of Junggar Basin, Xinjiang. Vertebrata PalAsiatica, 13, 185–189.
    [Google Scholar]
  42. Prothero, D.R. & Schwab, F. (1996) An Introduction to Sedimentary Rocks and Stratigraphy: Sedimentary Geology. W. H. Freeman and Company, New York.
    [Google Scholar]
  43. Roberts, A.P., Cui, Y. & Verosub, K.L. (1995) Wasp‐waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res., 100, 17909–17924.
    [Google Scholar]
  44. Robinson, D.M., Dupont‐Nivet, G., Gehrels, G.E. & Zhang, Y. (2002) The Tula uplift, northwestern China: evidence for regional tectonism of the northern Tibetan plateau. Geol. Soc. Am. Bull., 115, 35–47.
    [Google Scholar]
  45. Sobel, E.R., Chen, J. & Heermance, R.V. (2006) Late oligocene‐early miocene initiation of shortening in the Southwestern Chinese Tian Shan: implications for Neogene shortening rate variations. Earth Planet. Sci. Lett., 247, 70–81.
    [Google Scholar]
  46. Sun, J., Xu, Q. & Huang, B. (2007) Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian Shan Mountains. J. Geophys. Res., 112, doi: DOI: 10.1029/2006JB004653.
    [Google Scholar]
  47. Sun, J. & Zhang, Z. (2009) Syntectonic growth strata and implications for late Cenozoic tectonic uplift in the northern Tian Shan, China. Tectonophysics, 463, 60–68.
    [Google Scholar]
  48. Sun, J., Zhu, R. & Bowler, J. (2004) Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth Planet. Sci. Lett., 219, 239–253.
    [Google Scholar]
  49. Suppe, J., Chou, G.T. & Hook, S.C. (1992) Rates of folding and faulting determined from growth strata. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 105–121. Chapman & Hall, London.
    [Google Scholar]
  50. Tauxe, L. (2005) Inclination flattening and the geocentric axial dipole hypothesis. Earth Planet. Sci. Lett., 233, 247–261.
    [Google Scholar]
  51. Tauxe, L., Mullender, T.A.T. & Pick, T. (1996) Potbellies, wasp‐waists, and superparamagnetism in magnetic hysteresis. J. Geophys. Res., 101, 571–583.
    [Google Scholar]
  52. Thompson, S.C., Weldon, R.J., Rubin, C.M., Abdrakhmatov, K., Molnar, P. & Berger, G.W. (2002) Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. J. Geophys. Res., 107, art. no.‐2203. doi: DOI: 10.1029/2006JB004460.
    [Google Scholar]
  53. Torsvik, T.H., Dietmar Müller, R., Van der Voo, R., Steinberger, B. & Gaina, C. (2008) Global plate motion frames: toward a unified model. Rev. Geophys., 46, doi: DOI: 10.1029/2007RG000227, RG3004.
    [Google Scholar]
  54. Van Velzen, A.J. & Dekkers, M.J. (1999) Low‐temperature oxidation of magnetite in loess‐paleosol sequences: a correction of rock magnetic parameters. Stud. Geophys. Geodaet., 43, 357–375.
    [Google Scholar]
  55. Windley, B.F., Allen, M.B., Zhang, C., Zhao, Z. & Wang, G. (1990) Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology, 18, 128–131.
    [Google Scholar]
  56. Yang, Y. & Liu, M. (2002) Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan plateau and the Tian Shan. Tectonics, 21, 1059.
    [Google Scholar]
  57. Yin, A., Nie, S., Craig, P., Harrison, T.M., Ryerson, F.J., Qian, X. & Yang, G. (1998) Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17, 1–27.
    [Google Scholar]
  58. Zhang, P., Molnar, P. & Downs, W. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00475.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00475.x
Loading

Data & Media loading...

Supplements

Characteristic thermal demagnetizations. Left: Vector end‐point diagram with filled (open) symbols represent demagnetization projected in horizontal (vertical) plane. Right: Decay curves of NRM intensities versus applied demagnetization temperature. Typical behaviors for samples from lacustrine strata (top two; 034‐3, 046‐3), fluvial strata (middle 6; 112‐3, 213‐3, 258‐3, 292‐3, 333‐3, 372‐3) and alluvial fan strata (bottom two; 462‐3, 477‐3). Typical susceptibility vs. temperature behaviors. Thicker (thinner) lines are heating (cooling) cycles. Curves are normalized to initial susceptibility (K). Sporopollens counts from Taxihe (TXH) and Dusanzi (DSZ) Formations.Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error