1887
Volume 22 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Subsurface sediment remobilization and fluid flow processes and their products are increasingly being recognized as significant dynamic components of sedimentary basins. The geological structures formed by these processes have traditionally been grouped into mud volcano systems, fluid flow pipes and sandstone intrusion complexes. But the boundaries between these groups are not always distinct because there can be similarities in their geometries and the causal geological processes. For instance, the process model for both mud and sand remobilization and injection involves a source of fluid that can be separate from the source of sediment, and diapirism is now largely discarded as a deformation mechanism for both lithologies. Both mud and sand form dykes and sills in the subsurface and extrusive edifices when intersecting the sediment surface, although the relative proportions of intrusive and extrusive components are very different, with mud volcano systems being largely extrusive and sand injectite systems being mainly intrusive. Focused fluid flow pipes may transfer fluids over hundreds of metres of vertical section for millions of years and may develop into mud volcano feeder systems under conditions of sufficiently voluminous and rapid fluid ascent associated with deeper focus points and overpressured aquifers. Both mud and sand remobilization is facilitated by overpressure and generally will be activated by an external trigger such as an earthquake, although some mud volcano systems may be driven by the re‐charge dynamics of their fluid source. Future research should aim to provide spatio‐temporal ‘injectite’ stratigraphies to help constrain sediment remobilization processes in their basinal context and identify and study outcrop analogues of mud volcano feeders and pipes, which are virtually unknown at present. Further data‐driven research would be significantly boosted by numerical and analogue process modelling to constrain the mechanics of deep subsurface sediment remobilization as these processes can not be readily observed, unlike many conventional sediment transport phenomena.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00488.x
2010-07-21
2024-04-25
Loading full text...

Full text loading...

References

  1. Abidin, H.Z., Davies, R.J., Kusuma, M.A., Andreas, H. & Deguchi, T. (2009) Subsidence and uplift of Sidoarjo (East Java) due to the eruption of the Lusi mud volcano (2006–present). Environ. Geol., 57, 833–844.
    [Google Scholar]
  2. Andresen, K.J., Clausen, O.R. & Huuse, M. (2009) A giant (5.3 × 107 m3) middle Miocene (c. 15 Ma) sediment mound (M1) above the Siri Canyon, Norwegian‐Danish Basin: origin and significance. Mar. Petrol. Geol., 26, 1640–1655.
    [Google Scholar]
  3. Andresen, K.J., Huuse, M. & Clausen, O.R. (2008) Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea ‐implications for bottom current activity and fluid migration. Basin Res., 20, 445–466.
    [Google Scholar]
  4. Benjumea, B., Hunter, J.A., Aylsworth, J.M. & Pullan, S.E. (2003) Application of high‐resolution seismic techniques in the evaluation of earthquake site response, Ottawa Valley, Canada. Tectonophysics, 368, 193–209.
    [Google Scholar]
  5. Berndt, C. (2005) Focused fluid flow in passive continental margins. Philos. Trans. Roy. Soc. A: Math., Phys.Eng. Sci., 363, 2855–2871.
    [Google Scholar]
  6. Brown, K.M. (1990) The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J. Geophys. Res., 95, 8969–8982.
    [Google Scholar]
  7. Bryant, G. & Miall, A. (2010) Diverse products of near‐surface sediment mobilization in an ancient eolianite: outcrop features of the early Jurassic Navajo Sandstone. Basin Res., 22, 578–590.
    [Google Scholar]
  8. Burns, K.A., Brinkman, D.L., Brunskill, G.J., Logan, G.A., Volk, H., Wasmund, K. & Zagorskis, I. (2010) Fluxes and fate of petroleum hydrocarbons in the Timor Sea ecosystem with special reference to active natural hydrocarbon seepage. Mar. Chem., 118, 140–155.
    [Google Scholar]
  9. Calvès, G., Huuse, M., Schwab, A. & Clift, P. (2008) Three‐dimensional seismic analysis of high‐amplitude anomalies in the shallow subsurface of the northern Indus Fan: sedimentary and/or fluid origin. J. Geophys. Res. B: Solid Earth, 113, 1–16.
    [Google Scholar]
  10. Calvès, G., Schwab, A., Huuse, M., Van Rensbergen, P., Clift, P.D., Tabrez, A.R. & Inam, A. (2010) Cenozoic mud volcano activity along the Indus Fan: offshore Pakistan. Basin Res., 22, 398–413.
    [Google Scholar]
  11. Cartwright, J. (2010) Regionally extensive emplacement of sandstone intrusions: a brief review. Basin Res., 22, 502–516.
    [Google Scholar]
  12. Cartwright, J. & Huuse, M. (2005) 3D seismic technology: the geological ‘Hubble’. Basin Res., 17, 1–20.
    [Google Scholar]
  13. Cartwright, J., Huuse, M. & Aplin, A. (2007) Seal bypass systems. Am. Assoc. Petrol. Geol. Bull., 91, 1141–1166.
    [Google Scholar]
  14. Cartwright, J., James, D., Huuse, M., Vetel, W. & Hurst, A. (2008) The geometry and emplacement of conical sandstone intrusions. J. Struct. Geol., 30, 854–867.
    [Google Scholar]
  15. Clarke, R.H. & Cleverly, R.W. (1991) Petroleum seepage and post‐accumulation migration. In: Petroleum Migration (Ed. by W.A.England & A.J.Fleet ), Geol. Soc. Spec. Publ ., 59, 265–271.
    [Google Scholar]
  16. Connolly, D.L., Selva, C. & Aminzadeh, F. (2008) Using integrated gas chimney processing, frequency attenuation attributes, and seismic facies classification to delineate oil filled reservoirs: case studies from the Oriente Basin, Ecuador. AAPG Search and Discover Article #90078. AAPG Annual Convention, San Antonio, TX.
  17. Cowley, R. & O'brien, G.W. (2000) Identification and interpretation of leaking hydrocarbons using seismic data: a comparative montage of examples from the major fields in Australia's NorthWest and Gippsland Basin. APPEA J., 40, 121–150.
    [Google Scholar]
  18. Cunningham, R. & Lindholm, R.M. (2000) Seismic evidence for widespread gas hydrate formation, offshore West Africa. AAPG Mem., 73, 93–105.
    [Google Scholar]
  19. Davies, R., Manga, M., Tingay, M., Lusianga, S. & Swarbrick, R. (2010) Discussion of Sawolo, et al (2009) The Lusi mud volcano controversy: Was it caused by drilling?Mar. Petrol. Geol. in press.
    [Google Scholar]
  20. Davies, R.J. (2003) Kilometer‐scale fluidization structures formed during early burial of a deep‐water slope channel on the Niger Delta. Geology, 31, 949–952.
    [Google Scholar]
  21. Davies, R.J., Brumm, M., Manga, M., Rubiandini, R., Swarbrick, R. & Tingay, M. (2008) The East Java mud volcano (2006 to present): an earthquake or drilling trigger? Earth Planet. Sci. Lett., 272, 627–638.
    [Google Scholar]
  22. Davies, R.J., Huuse, M., Hirst, P., Cartwright, J. & Yang, Y. (2006) Giant clastic intrusions primed by silica diagenesis. Geology, 34, 917–920.
    [Google Scholar]
  23. Davies, R.J. & Stewart, S.A. (2005) Emplacement of giant mud volcanoes in the South Caspian Basin: 3D seismic reflection imaging of their root zones. J. Geol. Soc., 162, 1–4.
    [Google Scholar]
  24. Davies, R.J., Swarbrick, R.E., Evans, R.J. & Huuse, M. (2007) Birth of a mud volcano: East Java, 29 May 2006. GSA Today, 17, 4–9.
    [Google Scholar]
  25. De Boer, W., Rawlinson, P. & Hurst, A. (2007) Successful exploration of a sand injectite complex: Hamsun prospect, Norway block 24/9. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 65–69.
    [Google Scholar]
  26. Den Hartog Jager, D., Giles, M.R. & Griffiths, G.R. (1993) Evolution of Paleogene submarine fans in space and time. In: Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (Ed. by J.R.Parker ), pp. 59–71. Geological Society, London.
    [Google Scholar]
  27. Deville, E., Guerlais, S., Callec, Y., Griboulard, R., Huyghe, P., Lallemant, S., Mascle, A., Noble, M. & Schmitz, J. (2006) Liquefied vs stratified sediment mobilization processes: insight from the South of the Barbados accretionary prism. Tectonophysics, 428, 33–47.
    [Google Scholar]
  28. Deville, E., Guerlais, S.‐H., Lallemant, S. & Schneider, F. (2010) Fluid dynamics and subsurface sediment mobilization processes: an overview from Southeast Caribbean. Basin Res., 22, 361–379.
    [Google Scholar]
  29. Di Felice, R. (1995) Hydrodynamics of liquid fluidisation. Chem. Eng. Sci., 50, 1213–1245.
    [Google Scholar]
  30. Di Felice, R. (2010) Liquid‐solid suspension theory with reference to possible application in geology. Basin Res., 22, 591–602.
    [Google Scholar]
  31. Dixon, R.J., Schofield, K., Anderton, R., Reynolds, A.D., Alexander, R.W.S., Williams, M.C. & Davies, K.G. (1995) Sandstone diapirism and clastic intrusion in the Tertiary submarine fans of the Bruce‐Beryl Embayment, Quadrant 9, UKCS. In: Characterization of deep marine clastic systems (Ed. by A.J.Hartley & D.J.Prosser ), Geol. Soc. Lond. Spec. Publ. , 94, 77–94.
    [Google Scholar]
  32. Duranti, D. (2007) Large‐scale Sand Injection in the Paleogene of the North Sea: Modeling of Energy and Flow Velocities. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 129–139.
    [Google Scholar]
  33. Duranti, D. & Hurst, A. (2004) Fluidization and injection in the deep‐water sandstones of the Eocene Alba Formation (UK North Sea). Sedimentology, 51, 503–529.
    [Google Scholar]
  34. Evans, R.J., Davies, R.J. & Stewart, S.A. (2007) Internal structure and eruptive history of a kilometre‐scale mud volcano system, South Caspian Sea. Basin Res., 19, 153–163.
    [Google Scholar]
  35. Feseker, T., Brown, K.R., Blanchet, C., Scholz, F., Nuzzo, M., Reitz, A., Schmidt, M. & Hensen, C. (2010) Active mud volcanoes on the upper slope of the western Nile deep‐sea fan‐first results from the P362/2 cruise of R/V Poseidon. Geo-Mar. Lett., 30, 169–186.
    [Google Scholar]
  36. Flemings, P.B., Stump, B.B., Finkbeiner, T. & Zoback, M. (2002) Flow focusing in overpressured sandstones: theory, observations, and applications. Am. J. Sci., 302, 827–855.
    [Google Scholar]
  37. Frey‐Martinez, J., Cartwright, J., Hall, B. & Huuse, M. (2007) Clastic intrusion at the base of deep‐water sands: a trap‐forming mechanism in the Eastern Mediterranean. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 49–63.
    [Google Scholar]
  38. Galli, P. (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, 324, 169–187.
    [Google Scholar]
  39. Gallo, F. & Woods, A.W. (2004) On steady homogeneous sand‐water flows in a vertical conduit. Sedimentology, 51, 195–210.
    [Google Scholar]
  40. Gamberi, F. (2010) Subsurface sediment remobilization as indicator of regional scale defluidization within the upper Tortonian Marnoso‐arenacea Formation (Apenninic foredeep, northern Italy). Basin Res., 22, 562–577.
    [Google Scholar]
  41. Gamberi, F. & Rovere, M. (2010) Mud Diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Res., 22, 452–464.
    [Google Scholar]
  42. Gay, A., Lopez, M., Berndt, C. & Séranne, M. (2007) Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar. Geol., 244, 68–92.
    [Google Scholar]
  43. Gay, A., Lopez, M., Cochonat, P., Levaché, D., Sermondadaz, G. & Seranne, M. (2006) Evidences of early to late fluid migration from an upper Miocene turbiditic channel revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks, Lower Congo Basin. Mar. Petrol. Geol., 23, 387–399.
    [Google Scholar]
  44. Gay, A., Lopez, M., Cochonat, P. & Sermondadaz, G. (2004) Polygonal faults‐furrows system related to early stages of compaction – upper Miocene to recent sediments of the Lower Congo Basin. Basin Res., 16, 101–116.
    [Google Scholar]
  45. Gibson, R.E. (1958) The progress of consolidation in a clay layer increasing in thickness with time. Geotechnique, 8, 171–182.
    [Google Scholar]
  46. Glennie, K. & Hurst, A. (2007) Fluidization and associated soft‐sediment deformation in eolian sandstones: Hopeman Sandstone (Permian), Scotland, and Rotliegend, North Sea. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 245–252.
    [Google Scholar]
  47. Graue, K. (2000) Mud volcanoes in deepwater Nigeria. Mar. Petrol. Geol., 17, 959–974.
    [Google Scholar]
  48. Guhman, A.I. & Pederson, D.T. (1992) Boiling sand springs, Dismal River, Nebraska: agents for formation of vertical cylindrical structures and geomorphic change. Geology, 20, 8–10.
    [Google Scholar]
  49. Hansen, J.P.V., Cartwright, J.A., Huuse, M. & Clausen, O.R. (2005) 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid‐Norway. Basin Res., 17, 123–139.
    [Google Scholar]
  50. Harding, I.C., Armitage, J., Hollingworth, N. & Ainsworth, N. (2000) Sourcing mudsprings using integrated palaeontological analyses: an example from Wootton Bassett, Wiltshire, England. Geol. J., 35, 115–132.
    [Google Scholar]
  51. Harrison, W.J. & Summa, L.L. (1991) Paleohydrology of the Gulf of Mexico basin. Am. J. Sci., 291, 109–176.
    [Google Scholar]
  52. Heggland, R. (1997) Detection of gas migration from a deep source by the use of exploration 3D seismic data. Mar. Geol., 137, 41–47.
    [Google Scholar]
  53. Heggland, R. (1998) Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data. Mar. Petrol. Geol., 15, 1–9.
    [Google Scholar]
  54. Heggland, R. (2004) Definition of geohazards in exploration 3‐D seismic data using attributes and neural‐network analysis. Am. Assoc. Petrol. Geol. Bull., 88, 857–868.
    [Google Scholar]
  55. Herbin, J.P., Saint‐Germès, M., Maslakov, N., Shnyukov, E.F. & Vially, R. (2008) Oil seeps from the “Boulganack” mud volcano in the Kerch Peninsula (Ukraine–Crimea), study of the mud and the gas: inferences for the petroleum potential. Oil Gas Sci. Technol., 63, 609–628.
    [Google Scholar]
  56. Higgins, G.E. & Saunders, J.B. (1967) Report on 1964 Chatham Mud Island, Erin Bay, Trinidad, West Indies. AAPG Bull., 51, 55–64.
    [Google Scholar]
  57. Hjelstuen, B.O., Haflidason, H., Sejrup, H.P. & Nygård, A. (2010) Sedimentary and structural control on pockmark development – evidence from the Nyegga pockmark field, NW European margin. Geo-Mar. Lett., 30, 221–230.
    [Google Scholar]
  58. Hovland, M. (1990) Suspected gas‐associated clay diapirism on the seabed off Mid Norway. Mar. Petrol. Geol., 7, 267–276.
    [Google Scholar]
  59. Hovland, M., Gardner, J.V. & Judd, A.G. (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2, 127–136.
    [Google Scholar]
  60. Hubbard, S.M., Romans, B.W. & Graham, S.A. (2007) An outcrop example of large‐scale conglomeratic intrusions sourced from deep‐water channel deposits, Cerro Toro Formation, Magallanes Basin, Southern Chile. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright AAPG Mem ., 87, 199–207.
    [Google Scholar]
  61. Hurst, A. & Cartwright, J. (2007) Relevance of sand injectites to hydrocarbon exploration and production. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 1–19.
    [Google Scholar]
  62. Hurst, A. & Cartwright, J. (Eds.) (2007) Sand Injectites: Implications for Hydrocarbon Exploration and Production AAPG Mem., 87. AAPG, Tulsa.
    [Google Scholar]
  63. Hurst, A., Cartwright, J. & Duranti, D. (2003a) Fluidization structures produced by upward injection of sand through a sealing lithology. In: Subsurface Sediment Mobilization (Ed by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ., 216, 123–137.
    [Google Scholar]
  64. Hurst, A., Cartwright, J., Huuse, M., Jonk, R., Schwab, A., Duranti, D. & Cronin, B. (2003b) Significance of large‐scale sand injectites as long‐term fluid conduits: evidence from seismic data. Geofluids, 3, 263–274.
    [Google Scholar]
  65. Hustoft, S., Bünz, S. & Mienert, J. (2010) 3D seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid‐Norway. Basin Res., 22, 465–480.
    [Google Scholar]
  66. Huuse, M. (2008) Sandstone intrusions: implications for exploration and production. World Oil, 229, 87–91.
    [Google Scholar]
  67. Huuse, M., Cartwright, J., Hurst, A. & Steinsland, N. (2007) Seismic characterization of large‐scale sandstone intrusions. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 21–35.
    [Google Scholar]
  68. Huuse, M., Cartwright, J.A., Gras, R. & Hurst, A. (2005a) Giant conical sandstone intrusions in the lower Eocene of the Outer Moray Firth (UK North Sea): migration paths, reservoirs and potential drilling hazards. In: Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Dorè & B.Vining ), pp. 1577–1594. The Geological Society, London.
    [Google Scholar]
  69. Huuse, M., Jackson, C.A.‐L., Cartwright, J. & Hurst, A. (2009) Large‐scale sand injectites in the North Sea: Seismic and Event Stratigraphy and Implications for Hydrocarbon Exploration. AAPG Annual Convention, Denver, Presentation. Available at: http://www.searchanddiscovery.com/documents/2009/40481huuse/huuse.pdf. Accessed 30 June 2010.
  70. Huuse, M. & Mickelson, M. (2004) Eocene sandstone intrusions in the Tampen Spur area (Norwegian North Sea Quad 34) imaged by 3D seismic data. Mar. Petrol. Geol., 21, 141–155.
    [Google Scholar]
  71. Huuse, M., Shoulders, S.J., Netoff, D.I. & Cartwright, J. (2005b) Giant sandstone pipes record basin‐scale liquefaction of buried dune sands in the Middle Jurassic of SE Utah. Terra Nova, 17, 80–85.
    [Google Scholar]
  72. Jackson, C.A. (2007) The geometry, distribution, and development of clastic injections in slope systems: seismic examples from the Upper Cretaceous Kyrre Formation, Måløy Slope, Norwegian Margin. In: Sand Injectites: Implications for Exploration and Production (Ed. by A.Hurst & J.Cartwright ). AAPG Mem ., 87, 37–48.
    [Google Scholar]
  73. Jenkins, O.P. (1930) Sandstone dikes as conduits for oil migration through shales. AAPG Bull., 14, 411–421.
    [Google Scholar]
  74. Jolly, R.J.H. & Lonergan, L. (2002) Mechanisms and controls on the formation of sand intrusions. J. Geol. Soc., 159, 605–617.
    [Google Scholar]
  75. Jonk, R. (2010) Sand‐rich injectites in the context of short‐lived and long‐lived fluid flow. Basin Res., 22, 603–621.
    [Google Scholar]
  76. Judd, A.
    & Hovland, M. (Eds). (2007) Seabed Fluid Flow. Impact on Geology, Biology, and the Marine Environment. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  77. Judd, A.G. (2003) The global importance and context of methane escape from the seabed. Geo-Mar. Lett., 23, 147–154.
    [Google Scholar]
  78. Judd, A.G., Hovland, M., Dimitrov, L.I., García Gil, S. & Jukes, V. (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids, 2, 109–126.
    [Google Scholar]
  79. Kane, I.A. (2010) Development and flow structures of sand injectites: the Hind Sandstone Member injectite complex, Carboniferous, UK. Mar. Petrol. Geol., 27, 1200–1215.
    [Google Scholar]
  80. Kopf, A., Klaeschen, D. & Mascle, J. (2001) Extreme efficiency of mud volcanism in dewatering accretionary prisms. Earth Planet. Sci. Lett., 189, 295–313.
    [Google Scholar]
  81. Kopf, A.J. (2002) Significance of mud volcanism. Rev. Geophys., 40, 2–1.
    [Google Scholar]
  82. Kvenvolden, K.A. (1993) Gas hydrates – geological perspective and global change. Rev. Geophys., 31, 173–187.
    [Google Scholar]
  83. Kvenvolden, K.A. & Cooper, C.K. (2003) Natural seepage of crude oil into the marine environment. Geo-Mar. Lett., 23, 140–146.
    [Google Scholar]
  84. Kvenvolden, K.A. & Rogers, B.W. (2005) Gaia's breath – global methane exhalations. Mar. Petrol. Geol., 22, 579–590.
    [Google Scholar]
  85. León, R., Somoza, L., Medialdea, T., Hernández‐Molina, F.J., Vázquez, J.T., Díaz‐Del‐Rio, V. & González, F.J. (2010) Pockmarks, collapses and blind valleys in the Gulf of Cádiz. Geo-Mar. Lett., 30, 231–247.
    [Google Scholar]
  86. Levin, L.A. (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Boilogy, 43, 1–46.
    [Google Scholar]
  87. Leynaud, D., Mienert, J. & Vanneste, M. (2009) Submarine mass movements on glaciated and non‐glaciated European continental margins: a review of triggering mechanisms and preconditions to failure. Mar. Petrol. Geol., 26, 618–632.
    [Google Scholar]
  88. Lonergan, L., Borlandelli, C., Taylor, A., Quine, M. & Flanagan, K. (2007) The three‐dimensional geometry of sandstone injection complexes in the Gryphon Field, United Kingdom North Sea. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 103–112.
    [Google Scholar]
  89. Lonergan, L. & Cartwright, J.A. (1999) Polygonal faults and their influence on deep‐water sandstone reservoir geometries, Alba field, United Kingdom central North Sea. AAPG Bull. (Am. Assoc. Petrol. Geol.), 83, 410–432.
    [Google Scholar]
  90. Lonergan, L., Lee, N., Johnson, H.D., Cartwright, J.A. & Jolly, R.J.H. (2000) Remobilization and injection in deepwater depositional systems: implications for reservoir architecture and prediction. Deep‐water reservoirs of the World, GCSSEPM Foundation, 20th Annual Conference, pp. 515–532.
  91. Løseth, H., Gading, M. & Wensaas, L. (2009) Hydrocarbon leakage interpreted on seismic data. Mar. Petrol. Geol., 26, 1304–1319.
    [Google Scholar]
  92. Macdonald, D. & Flecker, R. (2007) Injected sand sills in a Strike‐slip Fault Zone: a case study from the Pil'sk Suite (Miocene), Southeast Schmidt Peninsula, Sakhalin. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 253–263.
    [Google Scholar]
  93. Macleod, M.K., Hanson, R.A., Bell, C.R. & Mchugo, S. (1999) Alba field ocean bottom cable seismic survey: impact on development. Leading Edge (Tulsa, OK), 18, 1306–1312.
    [Google Scholar]
  94. Maltman, A.J. & Bolton, A. (2003) How sediments become mobilized. In: Subsurface Sediment Mobilization (Ed by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ ., 216, 9–20.
    [Google Scholar]
  95. Manga, M. & Brodsky, E. (2006) Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu. Rev. Earth Planet. Sci., 34, 263–291.
    [Google Scholar]
  96. Mazzini, A. (2009) Mud volcanism: processes and implications. Mar. Petrol. Geol., 26, 1677–1896.
    [Google Scholar]
  97. Mazzini, A., Svensen, H., Akhmanov, G.G., Aloisi, G., Planke, S., Malthe‐Sørenssen, A. & Istadi, B. (2007) Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet. Sci. Lett., 261, 375–388.
    [Google Scholar]
  98. Mcginnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E. & Wüest, A. (2006) Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J. Geophys. Res. C: Oceans, 111, 1–15.
    [Google Scholar]
  99. Milkov, A.V. (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 167, 29–42.
    [Google Scholar]
  100. Milkov, A.V., Sassen, R., Apanasovich, T.V. & Dadashev, F.G. (2003) Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys. Res. Lett., 30, 9–1.
    [Google Scholar]
  101. Minisini, D. & Schwartz, H. (2007) An early Paleocene cold seep system in the Panoche and Tumey Hills, Central California (United States). In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 185–197.
    [Google Scholar]
  102. Möller, N.K., Gjelberg, J.G., Martinsen, O., Charnock, M.A., Færseth, R.B., Sperrevik, S. & Cartwright, J.A. (2004) A geological model for the Ormen Lange hydrocarbon reservoir. Norsk Geol. Tidsskr., 84, 169–190.
    [Google Scholar]
  103. Morley, C.K. (2003) Outcrop examples of mudstone intrusions from the Jerudong anticline, Brunei Darussalam and inferences for hydrocarbon reservoirs. In: Subsurface Sediment Mobilization (Ed by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ ., 216, 381–394.
    [Google Scholar]
  104. Moss, J. & Cartwright, J. (2010) 3D seismic expression of km‐scale fluid escape pipes from offshore Namibia. Basin Res., 22, 481–501.
    [Google Scholar]
  105. Mourgues, R. & Cobbold, P.R. (2006) Sandbox experiments on gravitational spreading and gliding in the presence of fluid overpressures. J. Struct. Geol., 28, 887–901.
    [Google Scholar]
  106. Netoff, D. (2002) Seismogenically induced fluidization of Jurassic erg sands, South‐Central Utah. Sedimentology, 49, 65–80.
    [Google Scholar]
  107. Newsom, J.F. (1903) Clastic Dikes. GSA Bull., 14, 227–268.
    [Google Scholar]
  108. Nunn, J.A. (1996) Buoyancy‐driven propagation of isolated fluid‐filled fractures: implications for fluid transport in Gulf of Mexico geopressured sediments. J. Geophys. Res. B: Solid Earth, 101, 2963–2970.
    [Google Scholar]
  109. Obermeier, S.F. (1996) Use of liquefaction‐induced features for paleoseismic analysis – an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo‐earthquakes. Eng. Geol., 44, 1–76.
    [Google Scholar]
  110. O'Brien, G., Goldie‐Divko, L., Harrison, M., Tingate, P., Hamilton, J. & Liu, K. (2010) Basin‐scale fluid flow, sealing, leakage and seepage processes in the Gippsland Basin, Australia. Basin Res. (in press).
    [Google Scholar]
  111. O'Brien, G.W., Lawrence, G.M., Williams, A.K., Glenn, K., Barrett, A.G., Lech, M., Edwards, D.S., Cowley, R., Boreham, C.J. & Summons, R.E. (2005) Yampi Shelf, Browse Basin, North‐West Shelf, Australia: a test-bed for constraining hydrocarbon migration and seepage rates using combinations of 2D and 3D seismic data and multiple, independent remote sensing technologies. Mar. Petrol. Geol., 22, 517–549.
    [Google Scholar]
  112. Orange, D.L., Teas, P.A., Decker, J., Baillie, P., Gilleran, P. & Levey, M.D. (2008) The utilisation of SeaSeep surveys (a defence/hydrography spin‐off) to identify and sample hydrocarbon seeps in offshore frontier basins. Paper presented at the International Petroleum Technology Conference, IPTC 2008 4, pp. 2590–2601.
  113. Osborne, M.J. & Swarbrick, R.E. (1997) Mechanisms for generating overpressure in sedimentary basins: a reevaluation. Am. Assoc. Petrol. Geol. Bull., 81, 1023–1041.
    [Google Scholar]
  114. Owen, G. (1987) Deformation processes in unconsolidated sands. In: Deformation of sediments and sedimentary rocks (Ed. by M.E.Jones & R.M.F.Preston ), Geol. Soc. London Spec. Publ ., 29, 11–24.
    [Google Scholar]
  115. Parize, O. & Friès, G. (2003) The Vocontian clastic dykes and skills: a geometric model. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ ., 216, 51–71.
    [Google Scholar]
  116. Parnell, J. & Kelly, J. (2003) Remobilization of sand from consolidated sandstones: evidence from mixed bitumen‐sand intrusions. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ ., 216, 505–513.
    [Google Scholar]
  117. Polteau, S., Mazzini, A., Galland, O., Planke, S. & Malthe‐Sørenssen, A. (2008) Saucer‐shaped intrusions: occurrences, emplacement and implications. Earth Planet. Sci. Lett., 266, 195–204.
    [Google Scholar]
  118. Pringle, J.K., Westerman, A.R., Stanbrook, D.A., Tatum, D.I. & Gardiner, A.R. (2007) Sand volcanoes of the Carboniferous Ross Formation, County Clare, Western Ireland: 3‐D internal sedimentary structure and formation. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 227–231.
    [Google Scholar]
  119. Reilly, M. & Flemings, P. (2010) Deep pore pressure and seafloor venting in the Auger Basin, Gulf of Mexico. Basin Res., 22, 380–397.
    [Google Scholar]
  120. Roberts, K., Davies, R.J. & Stewart, S.A. (2010) Structure of exhumed mud volcano feeder complexes, Azerbaijan. Basin Res., 22, 439–451.
    [Google Scholar]
  121. Rodrigues, N., Cobbold, P.R. & Løseth, H. (2009) Physical modelling of sand injectites. Tectonophysics, 474, 610–632.
    [Google Scholar]
  122. Sassen, R., Milkov, A.V., Roberts, H.H., Sweet, S.T. & Defreitas, D.A. (2003) Geochemical evidence of rapid hydrocarbon venting from a seafloor‐piercing mud diapir, Gulf of Mexico continental shelf. Mar. Geol., 198, 319–329.
    [Google Scholar]
  123. Sawolo, N., Sutriono, E., Istadi, B.P. & Darmoyo, A.B. (2009) The LUSI mud volcano triggering controversy: was it caused by drilling? Mar. Petrol. Geol., 26, 1766–1784.
    [Google Scholar]
  124. Sawolo, N., Sutriono, E., Istadi, B.P. & Darmoyo, A.B. (2010) Was LUSI caused by drilling? – authors reply to discussion. Mar. Petrol. Geol., in press.
    [Google Scholar]
  125. Schmitt, K.R. (1991) Sandstone Intrusions in the Andina Fold‐Thrust Belt (51–54°S): Implications for the Paleohydrogeologic Evolution of the Southernmost Andes (pp. 1–263). Columbia University, New York.
    [Google Scholar]
  126. Scott, A., Vigorito, M. & Hurst, A. (2009) The process of sand injection: internal structures and relationships with host strata (Yellowbank Creek Injectite Complex, California, U.S.A.). J. Sediment. Res., 79, 568–583.
    [Google Scholar]
  127. Seldon, B. & Flemings, P.B. (2005) Reservoir pressure and seafloor venting: predicting trap integrity in a Gulf of Mexico deepwater turbidite minibasin. Am. Assoc. Petrol. Geol. Bull., 89, 193–209.
    [Google Scholar]
  128. Shoulders, S. (2005) The Mechanics and Effects of the Remobilisation of Clastic Sediments from Reservoir to Regional Scale (pp. 1–295). Cardiff University, Cardiff, UK.
    [Google Scholar]
  129. Shoulders, S.J., Cartwright, J. & Huuse, M. (2007) Large‐scale conical sandstone intrusions and polygonal fault systems in Tranche 6, Faroe‐Shetland Basin. Mar. Petrol. Geol., 24, 173–188.
    [Google Scholar]
  130. Sibson, R.H. (2003) Brittle‐failure controls on maximum sustainable overpressure in different tectonic regimes. Am. Assoc. Petrol. Geol. Bull., 87, 901–908.
    [Google Scholar]
  131. Skinner, J.A.Jr & Mazzini, A. (2009) Martian mud volcanism: terrestrial analogs and implications for formational scenarios. Mar. Petrol. Geol., 26, 1866–1878.
    [Google Scholar]
  132. Smyers, N.B. & Peterson, G.L. (1971) Sandstone Dikes and Sills in the Moreno Shale, Panoche Hills, California. GSA Bull., 82, 3201–3208.
    [Google Scholar]
  133. Sokol, E., Novikov, I., Zateeva, S., Vapnik, Ye., Shagam, R. & Kozmenko, O. (2010) Combustion metamorphism in the Nabi Musa dome: new implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res., 22, 414–438.
    [Google Scholar]
  134. Solomon, E.A., Kastner, M., Macdonald, I.R. & Leifer, I. (2009) Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nature Geoscience, 2, 561–565.
    [Google Scholar]
  135. Stewart, S.A. & Davies, R.J. (2006) Structure and emplacement of mud volcano systems in the South Caspian Basin. Am. Assoc. Petrol. Geol. Bull., 90, 771–786.
    [Google Scholar]
  136. Surlyk, F., Gjelberg, J. & Noe‐Nygaard, N. (2007) The Upper Jurassic Hareelv Formation of East Greenland: a giant sedimentary injection complex. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem ., 87, 141–149.
    [Google Scholar]
  137. Svendsen, J., Hansen, H., Stærmose, T. & Engkilde, M. (2010) Sand remobilization and injection above an active salt diapir: the Tyr Sand of the Nini Field, Eastern North Sea. Basin Res., 22, 548–561.
    [Google Scholar]
  138. Szarawarska, E. (2009) Origin of Large‐scale Sandstone Intrusions: Insights from Subsurface Case Studies and Numerical Modelling (pp. 1–205). University of Aberdeen, Aberdeen, UK.
    [Google Scholar]
  139. Szarawarska, E., Huuse, M., Hurst, A., De Boer, W., Lu, L., Molyneux, S. & Rawlinson, P. (2010) 3D seismic characterisation of large‐scale sandstone intrusions in the lower Palaeogene of the North Sea: completely injected vs in situ remobilized sandbodies. Basin Res., 22, 517–532.
    [Google Scholar]
  140. Taylor, B.J. (1982) Sedimentary dykes, pipes and related structures in the Mesozoic sediments of south‐eastern Alexander Island, Antarctica. Br. Antarctic Surv. Bull., 51, 1–42.
    [Google Scholar]
  141. Thompson, B.J., Garrison, R.E. & Moore, J.C. (2007) A reservoir‐scale Miocene Injectite near Santa Cruz, California. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem., 87, 151–162.
    [Google Scholar]
  142. Van Rensbergen, P., Depreiter, D., Pannemans, B. & Henriet, J. (2005) Seafloor expression of sediment extrusion and intrusion at the El Arraiche mud volcano field, Gulf of Cadiz. J. Geophys. Res. F: Earth Surface, 110, 1–15.
    [Google Scholar]
  143. Van Rensbergen, P.
    , Hillis, R.R. , Maltman, A. & Morley, C.K. (Eds) (2003) Subsurface Sediment Mobilization, Special Publications, 216. Geological Society, London.
    [Google Scholar]
  144. Van Rensbergen, P. & Morley, C.K. (2003) Re‐evaluation of mobile shale occurrences on seismic sections of the Champion and Baram deltas, offshore Brunei. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ ., 216, 395–409.
    [Google Scholar]
  145. Van Rensbergen, P., Morley, C.K., Ang, D.W., Hoan, T.Q. & Lam, N.T. (1999) Structural evolution of shale diapirs from reactive rise to mud volcanism: 3D seismic data from the Baram delta, offshore Brunei Darussalam. J. Geol. Soc., 156, 633–650.
    [Google Scholar]
  146. Van Rensbergen, P., Rabaute, A., Colpaert, A., Ghislain, T.S., Mathijs, M. & Bruggeman, A. (2007) Fluid migration and fluid seepage in the Connemara field, porcupine basin interpreted from industrial 3D seismic and well data combined with high‐resolution site survey data. Int. J. Earth Sci., 96, 185–197.
    [Google Scholar]
  147. Vigorito, M., Hurst, A., Cartwright, J. & Scott, A. (2008) Regional‐scale subsurface sand remobilization: geometry and architecture. J. Geol. Soc., 165, 609–612.
    [Google Scholar]
  148. Westbrook, G.K., Thatcher, K.E., Rohling, E.J., Piotrowski, A.M., Pälike, H., Osborne, A.H., Nisbet, E.G., Minshull, T.A., Lanoisellé, M., James, R.H., Hühnerbach, V., Green, D., Fisher, R.E., Crocker, A.J., Chabert, A., Bolton, C., Beszczynska‐Möller, A., Berndt, C. & Aquilina, A. (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett., 36, 1–5.
    [Google Scholar]
  149. Wild, J. & Briedis, N. (2010) Structural and stratigraphic relationships of the Paleocene mounds of the Utsira High. Basin Res., 22, 533–547.
    [Google Scholar]
  150. Yardley, G.S. & Swarbrick, R.E. (2000) Lateral transfer: a source of additional overpressure? Mar. Petrol. Geol., 17, 523–537.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00488.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00488.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error