1887
Volume 24, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The Pipanaco Basin, in the southern margin of the Andean Puna plateau at . 28°SL, is one of the largest and highest intermontane basins within the northernmost Argentine broken foreland. With a surface elevation >1000 m above sea level, this basin represents a strategic location to understand the subsidence and subsequent uplift history of high‐elevation depositional surfaces within the distal Andean foreland. However, the stratigraphic record of the Pipanaco Basin is almost entirely within the subsurface, and no geophysical surveys have been conducted in the region. A high‐resolution gravity study has been designed to understand the subsurface basin geometry. This study, together with stratigraphic correlations and flexural and backstripping analysis, suggests that the region was dominated by a regional subsidence episode of . 2 km during the Miocene‐Pliocene, followed by basement thrusting and . 1–1.5 km of sediment filling within restricted intermontane basin between the Pliocene‐Pleistocene. Based on the present‐day position of the basement top as well as the Neogene‐Present sediment thicknesses across the Sierras Pampeanas, which show slight variations along strike, sediment aggradation is not the most suitable process to account for the increase in the topographic level of the high‐elevation, close‐drainage basins of Argentina. The close correlation between the depth to basement and the mean surface elevations recorded in different swaths indicates that deep‐seated geodynamic process affected the northern Sierras Pampeanas. Seismic tomography, as well as a preliminary comparison between the isostatic and seismic Moho, suggests a buoyant lithosphere beneath the northern Sierras Pampeanas, which might have driven the long‐wavelength rise of this part of the broken foreland after the major phase of deposition in these Andean basins.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2011.00539.x
2012-01-18
2020-10-27
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Allen, J.R. (1990) Basin Analysis: Principles and Applications. 2nd edn, Blackwell Publishing, Oxford, UK, pp. 549. 2005. ISBN 0‐632‐05207‐4.
    [Google Scholar]
  2. Allmendinger, R.W., Jordan, T.E., Kay, S.M. & Isacks, B.L. (1997) The evolution of the Altiplano‐Puna Plateau of the Central Andes. Annu. Rev. Earth Planet Sci., 25, 139–174.
    [Google Scholar]
  3. Alvarado, P. & Ramos, V.A. (2011) Earthquake deformation in the northwestern Sierras Pampeanas of Argentina based on seismic waveform modeling. J. Geodynamics, 51, 205–218.
    [Google Scholar]
  4. Astini, R.A. (2009) El marco tectónico de la glaciación carbonífera. XII Congreso Geológico Chileno, Extended Abstracts: S10–003:1‐4. 22–26., Santiago de Chile, Chile, Servicio Nacional de Geologia y Mineria, Chile.
  5. Bain, N. (2001) Petrological and geochemical contribution to the Farallón Negro Volcanic Complex, NW‐Argentina. Diploma thesis, Swiss Federal Institute of Technology, Zurich, 92 pp.
  6. Barbosa, V.C.F., Silva, J.B.C. & Medeiros, W.E. (1999) Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics, 64, 48–60.
    [Google Scholar]
  7. Barnes, J.B. & Ehlers, T.A. (2009) End member models for Andean Plateau uplift. Earth Sci. Rev., 97, 117–144.
    [Google Scholar]
  8. Bhattacharyya, B.K. (1978) Computer modeling in gravity and magnetic interpretation. Geophysics, 43 (5), 912–929.
    [Google Scholar]
  9. Blakely, R.J. (1995) Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge, UK, 441 pp.
    [Google Scholar]
  10. Bossi, G.E. & Muruaga, C.M. (2009) Estratigrafía e inversión tectónica del “rift” neógeno en el Campo del Arenal, Catamarca, NO Argentina. Andean Geol., 36 (2), 311–341.
    [Google Scholar]
  11. Bossi, G.E. & Palma, R. (1982) Reconsideración de la estratigrafía del Valle de Santa María, Provincia de Catamarca, Argentina. Congreso Latinoamericano de Geología 5, Proceeding 1, 155–172, Buenos Aires.
    [Google Scholar]
  12. Bossi, G.E., Muruaga, C., Georgieff, S., Ahumada, A.L., Ibáñez, L. & Vides, M.E. (1997) The Santa María Neogene Basin of the Pampean Ranges: an example of mixed tectonic evolution. Congreso Latinoamericano de Sedimentología, 1, Sociedad Venezolana de Geólogos, 1, 97–104. Caracas.
    [Google Scholar]
  13. Bossi, G.E., Muruaga, C. & Gavriloff, I.J.C. (1999) Ciclo Andino. Neógeno‐Pleistoceno. Sedimentación. In: 14th Congreso Geológico Argentino Relatorio 1 (Ed. by G.González Bonorino , R.Omarini & J.Viramonte ), pp. 329–360. Salta, Argentina.
    [Google Scholar]
  14. Bossi, G.E., Georgieff, S.M. & Gavriloff, I.J.C. (2000) Tectosedimentary regional scheme of the Neogene basins of the Pampean Ranges, Argentina. II Congreso Latinoamericano de Sedimentología and VII Reunión Argentina de Sedimentología, Abstracts, 52. Asociacion Argentina de Sedimentologia, Mar del Plata, Argentina.
  15. Bossi, G.E., Georgieff, S.M. & Vides, M.E. (2007) Arquitectura y paleoambientes de los depósitos fluviales gravosos de la Formación Las Cumbres (Neógeno), en Villa Mervil, La Rioja, Argentina. Lat. Am. J. Sedimentol. Basin Anal., 14 (1), 53–57.
    [Google Scholar]
  16. Bossi, G.E., Georgieff, S.M., Muruaga, C.M., Ibáñez, L.M. & Sanagua, J.G. (2009) Los conglomerados sintectónicos de la Formación Las Cumbres (Plio‐Pleistoceno), Sierras Pampeanas de La Rioja y Catamarca, Argentina. Andean Geol., 36 (2), 172–196.
    [Google Scholar]
  17. Brocher, T.M. (2005) Empirical relations between elastic wavespeeds and density in the earth's crust. Bull. Seismological Soc. Am., 95 (6), 2081–2092.
    [Google Scholar]
  18. Brooks, B.A., Bevis, M., Smalley, R.K., Kendrick, E., Manceda, R., Lauría, E., Maturana, R. & Araujo, M. (2003) Crustal motion in the Southern Andes (26°–36°): do the Andes behave like a microplate. Geochem. Geophys. Geosyst., 4, 1085.
    [Google Scholar]
  19. Butler, R.F., Marshall, L.G., Drake, R.E. & Curtis, G.H. (1984) Magnetic polarity stratigraphy and 40K‐40Ar dating of late Miocene and early Pliocene continental deposits, Catamarca province, NW Argentina. J. Geol., 92, 623–636.
    [Google Scholar]
  20. Büttner, S.H. (2009) The Ordovician Sierras Pampeanas – Puna basin connection: basement thinning and basin formation in the Proto‐Andean back‐arc. Tectonophysics, 477, 278–291.
    [Google Scholar]
  21. Caelles, J.C., Clark, A.H., Farrar, E., Mcbride, S.L. & Quirt, S. (1971) Potassium‐argon ages of porphyry copper deposits and associated rocks in the Farallón Negro‐Capillitas district, Catamarca, Argentina. Econ. Geol., 66, 961–964.
    [Google Scholar]
  22. Caminos, R. (1979) Sierras Pampeanas Noroccidentales Salta, Tucumán, Catamarca, La Rioja y San Juan. In: Segundo simposio de Geología Regional Argentina 1 (Ed. by J.C.Turner ), pp. 225–291, Academia nacional de ciencias, Córdoba.
    [Google Scholar]
  23. Cardozo, N. & Jordan, T.E. (2001) Causes of spatially variable tectonic subsidence in the Miocene Bermejo foreland basin, Argentina. Basin Res., 13, 335–357.
    [Google Scholar]
  24. Carrapa, B., Sobel, E.R. & Strecker, M.R. (2006) Orogenic Plateau growth in the Central Andes: evidence from sedimentary rock provenance and apatite fission track thermochronology in the Fiambala Basin, southernmost Puna Plateau margin (NW Argentina). Earth Planet. Sci. Lett., 247, 82–100.
    [Google Scholar]
  25. Carrapa, B., Hauer, J., Schoenbohm, L., Strecker, M.R., Schmitt, A.K., Villanueva, A. & Sosa Gomez, J. (2008) Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: an integrated study of the Neogene Fiambalá basin, NW Argentina. Geol. Soc. Am. Bull., 120 (11/12), 1518–1543.
    [Google Scholar]
  26. Carrapa, B., Hauer, J., Schoenbohm, L., Strecker, M.R., Schmitt, A.K., Villanueva, A. & Sosa Gómez, J. (2010) Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: an integrated study of the Neogene Fiambala Basin, NW Argentina: comment and discussion. Geol. Soc. Am. Bull., 122, 950–953.
    [Google Scholar]
  27. Collo, G., Dávila, F.M., Nóbile, J.C., Astini, R.A. & Gehrels, G. (2011) Burial and thermal history of the Vinchina foreland basin, W Argentina (28°–29°SL): signature of the Neogene flat subduction in the Andes?Tectonics, 30, TC4012, doi:10.1029/2010TC002841.
    [Google Scholar]
  28. Coughlin, T.J. (2000) Linked orogen‐oblique fault zones in the Central Andes: implications for Andean orogenesis and metallogenesis. Unpublished PhD Thesis, University of Queensland, Queensland.
  29. Cristallini, E.O., Comínguez, A.H., Ramos, V.A. & Mercerat, E.D. (2004) Basement double‐wedge thrusting in the northern Sierras Pampeanas of Argentina Constraints from deep seismic reflection. In: Thrust Tectonics and Hydrocarbon Systems (Ed. by K.R.McClay ) Am. Assoc. Petrol. Geol. Mem., 82, 65–90.
    [Google Scholar]
  30. Dahlquist, J., Pankhurst, R., Rapela, C., Casquet, C., Fanning, C., Alasino, P. & Baez, M. (2006) The San Blas Pluton: an example of Carboniferous plutonism in the Sierras Pampeanas, Argentina. J. South Am. Earth Sci., 20, 341–350.
    [Google Scholar]
  31. Davila, F.M. (2010) Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: an integrated study of the Neogene Fiambala Basin, NW Argentina: comment and discussion. Geol. Soc. Am. Bull., 122, 946–949.
    [Google Scholar]
  32. Dávila, F.M. (2003) Transecta estratigráfica‐estructural a los 28°30′–28°54′ de Latitud Sur, sierra de Famatina, provincia de La Rioja, República Argentina. Unpublished PhD Thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina.
  33. Dávila, F.M. & Astini, R.A. (2003) Early Middle Miocene broken foreland development in the southern Central Andes: evidence for extension prior to regional shortening. Basin Res., 15, 379–396.
    [Google Scholar]
  34. Dávila, F.M. & Astini, R.A. (2007) Cenozoic provenance history of synorogenic conglomerates in western Argentina (Famatina Belt): implications for Central Andean foreland development. Geol. Soc. Am. Bull., 119, 609–622.
    [Google Scholar]
  35. Dávila, F.M., Astini, R.A., Jordan, T.E. & Kay, S.M. (2004) Early Miocene andesite conglomerates in the Sierra de Famatina, broken foreland region of western Argentina, and documentation of magmatic broadening in the south‐central Andes. J. South Am. Earth Sci, 17, 89–101.
    [Google Scholar]
  36. Dávila, F.M., Astini, R.A. & Jordan, T.E. (2005) Cargas subcorticales en el Antepaís Andino y la planicie pampeana: evidencias estratigráficas, topográficas y geofísicas. Rev. Asoc. Geol. Argent., 60 (4), 775–786.
    [Google Scholar]
  37. Dávila, F.M., Astini, R.A., Jordan, T.E., Gehrels, G. & Ezpeleta, M. (2007) Miocene forebulge development previous to the broken foreland partitioning in the southern Central Andes, west‐central Argentina. Tectonics, 26, TC5016.
    [Google Scholar]
  38. Dávila, F.M., Lithgow‐Bertelloni, C. & Giménez, M. (2010) Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: the role of the flat slab. Earth Planet. Sci. Lett., 295 (1–2), 187–194.
    [Google Scholar]
  39. Decelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  40. Dimri, V.P. (1992) Deconvolution and Inverse Theory. Elsevier Science Publishers, Amsterdam, London, New York, Tokyo.
    [Google Scholar]
  41. Duarte, R.G. (1997) Gliptodontes del pleistoceno tardío de Agua de las Palomas, Campo del Pucara, Catamarca, Argentina. Variaciones morfológicas del caparazón de Glyptodon Reticulatus Owen, 1845. Ameghiniana, 34 (3), 345–355.
    [Google Scholar]
  42. Eremchuck, J.E. (1984) Fracturas del Borde Occidental de las Sierras de Ambato‐Manchao, Provincia de Catamarca. IX Congreso Geológico Argentino, II, 362–367. Bariloche.
    [Google Scholar]
  43. Ezpeleta, M., Dávila, F.M. & Astini, R.A. (2006) Estratigrafía y paleoambientes de la Formación Los Llanos (La Rioja, Argentina): Una secuencia condensada miocena en el antepaís fragmentado andino central. Revista de la Asociación Geológica Argentina, 61, 171–186.
    [Google Scholar]
  44. Febrer, J., Baldis, B., Gascón, J., Mamani, M. & Pomposiello, C. (1982) La anomalía geotérmica Calchaquí en el noroeste argentino: Un nuevo proceso geodinámico asociado a la subducción de la placa de Nazca. Actas del V Congreso Latinoamericano de Geología, Argentina, III, 691–703, Buenos Aires
    [Google Scholar]
  45. Fisher, N.D., Jordan, T.E. & Brown, L. (2002) The structural and stratigraphic evolution of the La Rioja basin, Argentina. J. South Am. Earth Sci., 15, 141–156.
    [Google Scholar]
  46. Galván, A. & Ruiz Huidobro, O. (1965) Geología del Valle de Santa María. Estratigrafía de las Formaciones Mezosoico‐Terciarias. Acta Geológica Lilloana, 7, 217–230.
    [Google Scholar]
  47. Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., Macfadden, B., Eiler, J., Ghosh, P. & Mulch, A. (2008) Rise of the Andes. Science, 320 (5881), 1304.
    [Google Scholar]
  48. Gavriloff, I.J.C. & Bossi, G.E. (1992) Revisión general, análisis facial, correlación y edades de las Formaciones San José y Río Salí (Mioceno medio), provincias de Catamarca, Tucumán y Salta, República Argentina. Acta Geológica Lilloana, 17 (2), 5–43.
    [Google Scholar]
  49. Gerard, A. & Debeglia, N. (1975) Automatic threedimensional modeling for the interpretation of gravity or magnetic anomalies. Geophysics, 40 (6), 1014–1034.
    [Google Scholar]
  50. Gimenez, M.E., Martinez, M.P., Jordan, T., Ruíz, F. & Lince Klinger, F. (2009) Gravity characterization of the La Rioja Valley Basin, Argentina. Geophysics, 74 (3), B83–B94.
    [Google Scholar]
  51. González Bonorino, F. (1950) Geología y Petrografía de las Hojas 12d (Capillitas) y 13d (Andalgalá). Boletín Dirección General de Industria Minera, 70, 1–100, Buenos Aires.
    [Google Scholar]
  52. González Bonorino, F. (1972) Descripción Geológica de la Hoja 13c Fiambalá, Provincia de Catamarca. Carta Geológico‐económica de la República Argentina. Boletín Dirección Nac. Geol. Min., 127, 1–7.
    [Google Scholar]
  53. González Díaz, E.F. (1970) El Carbónico Superior alto (Westfaliano‐Estefaniano) de la quebrada de La Cébila (NE de La Rioja). 4ª Jornadas Geológicas Argentinas, Proceedings, 2, 163–186, Mendoza.
    [Google Scholar]
  54. Götze, H.‐J. & Krause, S. (2002) The Central Andean gravity high a relic of an old subduction complex?J. South Am. Earth Sci., 14, 799–811.
    [Google Scholar]
  55. Guspí, F. & Introcaso, B. (2000) A sparse spectrum technique for gridding and separating potential field anomalies. Geophysics, 65, 1154–1161.
    [Google Scholar]
  56. Halter, W.E., Bain, N., Becker, K., Heinrich, C.A., Landtwing, M.R., Von Quadt, A., Clark, A.H., Sasso, A.M., Bissig, T. & Tosdal, R.M. (2004) From andesitic volcanism to the formation of a porphyry Cu‐Au mineralizing magma chamber: the Farallón Negro Volcanic Complex, northwestern Argentina. J. Volc. Geoth. Res., 136, 1–30.
    [Google Scholar]
  57. Hilley, G.E. & Coutand, I. (2010) Links between topography, erosion, rheological heterogeneity, and deformation in contractional settings: insights from the Central Andes. Tectonophysics, 495 (1–2), 78–92.
    [Google Scholar]
  58. Hinze, W.J. (2003) Bouguer reduction density: why 2.67?Geophysics, 68 (5), 1559–1560.
    [Google Scholar]
  59. Hockenreiner, M., Sollner, F. & Millar, H. (2003) Dating the TIPA shear zone: an Early Devonian terrane boundary between the Famatinian and Pampean systems (NW Argentina). J. South Am. Earth Sci., 16, 45–66.
    [Google Scholar]
  60. Hongn, F., Del Papa, C.J., Powel, I.A., Petrinovic Mon, R. & Deraco, V. (2007) Middle Eocene deformation and sedimentation in the Puna‐Eastern Cordillera transition (23°–26°S): inheritance of pre‐existing heterogeneities on the pattern of initial Andean shortening. Geology, 35, 271–274.
    [Google Scholar]
  61. Introcaso, B. (1999) Algunos elementos para el tratamiento de anomalías de campos potenciales. Instituto de Física de Rosario, Libro 3, Temas de Geociencia, Rosario, Argentina, 50 pp.
    [Google Scholar]
  62. Jordan, T.E. & Allmendinger, R.W. (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am. J. Sci., 286, 737–764.
    [Google Scholar]
  63. Jordan, T.E., Zeitler, P., Ramos, V.A. & Gleadow, A.J.W. (1989) Thermochronometric data on the development of the basement peneplain in the Sierras Pampeanas, Argentina. J. South Am. Earth Sci., 2, 207–222.
    [Google Scholar]
  64. Kay, S.M. & Mpodozis, C. (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat‐slab. J. South Am. Earth Sci., 15, 39–57.
    [Google Scholar]
  65. Kay, S.M., Maksaev, V.A., Moscoso, R., Mpodozis, C., Nasi, C. & Gordillo, C.E. (1988) Tertiary Andean magmatism in Chile and Argentina between 28S and 33S: correlation of magmatic chemistry with changing Benioff zone. J. South Am. Earth Sci., 1, 21–38.
    [Google Scholar]
  66. Kay, S.M., Coira, B. & Viramonte, J. (1994) Young mafic back‐ark volcanic rocks as guides to lithospheric delamination beneath the Argentine Puna Plateau, Central Andes. J. Geophys. Res., 99, 24323–24339.
    [Google Scholar]
  67. Keating, P.B. (1998) Weighted Euler deconvolution of gravity data. Geophysics, 63, 1595–1603.
    [Google Scholar]
  68. Kivior, I. & Boyd, D. (1998) Interpretation of the aeromagnetic experimental survey in the Eromanga Cooper basin. Can. J. Explor. Geophys., 34, 58–66.
    [Google Scholar]
  69. Kleinert, K. & Strecker, M.R. (2001) Changes in moisture regime and ecology in response to late Cenozoic orographic barriers: the Santa Maria Valley, Argentina. Geol. Soc. Am. Bull., 113, 728–742.
    [Google Scholar]
  70. Kley, J., Monaldi, C.R. & Salfity, J.A. (1999) Along‐strike segmentation of the Andean foreland: causes and consequences. Tectonophysics, 301, 75–94.
    [Google Scholar]
  71. Kraemer, B., Adelmann, D., Alten, M., Schnur, W., Erpenstein, K., Kiefer, E., Van Den Bogaard, P. & Gorler, K. (1999) Incorporation of the Paleogene foreland into Neogene Puna Plateau: the Salar de Antofalla, NW Argentina. J. South Am. Earth Sci., 12, 157–182.
    [Google Scholar]
  72. Latorre, C., Quade, J. & Mcintosh, W.C. (1997) The expansion of C4 grasses and global change in the table Miocene: stable isotope evidence from the Americas. Earth Planet. Sci. Lett., 146 (1–2), 83–96.
    [Google Scholar]
  73. Lim, J.S. & Malik, N.A. (1981) A new algorithm for two‐dimensional maximum entropy power spectrum estimation. IEEE Trans. Acoust. Speech Signal Process., 29, 401–413.
    [Google Scholar]
  74. Llambías, E. (1970) Geología de los Yacimientos Mineros de Agua de Dionisio. Revista de la Asociación Argentina de Mineralogía, Petrología y Sedimentología, 1 (1–2), 2–32.
    [Google Scholar]
  75. Marshall, L.G., Butler, R.F., Drake, R.E., Curtis, G.H. & Tedford, R.H. (1979) Calibration of the great American interchange. Science, 204, 272–279.
    [Google Scholar]
  76. Martinez, M.P., Perucca, L.P., Gimenez, M.E. & Ruíz, F. (2008) Manifestaciones geomorfológicas y geofísicas de una estructura geológica profunda al sur de la Sierra de Pie de Palo, Sierras Pampeanas. Revista de la Asociación Geológica Argentina, 63 (2), 104–111.
    [Google Scholar]
  77. Mcglashan, N., Brown, L. & Kay, S.M. (2008) Crustal thickness in the central Andes from teleseismically recorded depth phase precursors. Geophys. J. Int., 175 (3), 1013–1022.
    [Google Scholar]
  78. Mortimer, E.L., Carrapa, B., Coutand, I., Schoenbohm, L., Sobel, E.R., Gomez, J.S. & Strecker, M.R. (2007) Fragmentation of a foreland basin in response to out‐of‐sequence basement uplifts and structural reactivation: El Cajón–Campo del Arenal basin, NW Argentina. Geol. Soc. Am. Bull., 119 (5/6), 637–653.
    [Google Scholar]
  79. Muruaga, C.M. (1998) Estratigrafía y Sedimentología del Terciario Superior de la Sierra de Hualfín, entre las localidades de Villavil y San Fernando, Provincia de Catamarca. PhD Thesis (unpublished), Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto Miguel Lulo, Tucuman, Argentina.
  80. Muruaga, C.M. (2001a) Estratigrafía del Membro El Jarillal (Formación Chiquimil, Mioceno superior), la Sierra de Hualfín, Catamarca. Acta Geológica Lilloana, 18 (2), 265–280.
    [Google Scholar]
  81. Muruaga, C.M. (2001b) Estratigrafía y desarrollo tectosedimentario de sedimentos terciarios en los alrededores de la Sierra de Hualfín, borde suroriental de la Puna, Catamarca, Argentina. Revista de la Asociación Argentina de Sedimentología, 8 (1), 27–50.
    [Google Scholar]
  82. Nabiaghian, M.N. (1972) The analytic signal of two‐ dimentional magnetic bodies with polygonal cross‐secction: its properties and use for automated interpretation. Geophysics, 37, 507–517.
    [Google Scholar]
  83. Nabiaghian, M.N. (1974) Aditional comments on the analytic signal of two dimensional magnetic bodies with polygonal cross‐section. Geophysics, 39, 85–92.
    [Google Scholar]
  84. Nabiaghian, M.N. (1984) Toward a three‐dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics, 49, 780–786.
    [Google Scholar]
  85. Nasif, N.L., Esteban, G. & Georgieff, S.M. (2007) Nuevo registro de vertebrados para la Formación Aconquija, provincia de Catamarca, Noroeste de Argentina. Implicancias cronoestratigráficas y consideraciones paleoambientales. Acta Geológic Llilloana, 20 (1), 99–112.
    [Google Scholar]
  86. Nóbile, J.C. & Dávila, F.M. (2011) Uplift history of northern Sierras Pampeanas broken foreland, Argentina: a preliminary river profile approach. In: Actas del XVIII Congreso Geológico Argentino. Asociacion Geologica Argentina, Neuquén, Argentina.
    [Google Scholar]
  87. Penk, W. (1920) Der Südrand der Puna de Atacama (NW Argentinien). Ein Beitrag zur Kenntnis des Andinen Gebirgstypus und der Frage der Gebirgsbildung. Der Abhandlungen der Sachsischen Akademie der Wissenchaften, 1, 3–420, Leipzig.
    [Google Scholar]
  88. Pérez Gussinyé, M., Lowry, A.R. & Watts, A.B. (2007) Effective elastic thickness of South America and its implications for intra‐continental deformation. Geochem. Geophys. Geosyst., 8, Q05009.
    [Google Scholar]
  89. Popowski, T., Connard, G. & French, R. (2006) GMSYS‐3D: 3D Gravity and Magnetic Modeling for OasisMontaj – User Guide. Northwest Geophysical Associates, Corvallis, Oregon.
    [Google Scholar]
  90. Ramos, V.A., Cristallini, E.O. & Pérez, D.J. (2002) The Pampean fl at‐slab of the Central Andes. J. South Am. Earth Sci., 15, 59–78.
    [Google Scholar]
  91. Reid, A.B., Allsop, J.M., Granser, H., Millett, A.J. & Somerton, I.W. (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55, 80–91.
    [Google Scholar]
  92. Reiners, P.W., Ehlers, T.A. & Zeitler, P.K. (2005) Past, present and future of thermochronology. Rev. Mineral. Geochem., 58, 1–18.
    [Google Scholar]
  93. Reynolds, J.H. (1987) Chronology of Neogene Tectonics in Western Argentina (27°–33°S) based on the magnetic polarity stratigraphy of foreland basin sediments. Unpublished PhD Thesis, Dartmouth College, Hanover, USA.
  94. Roest, W.R., Verhoef, J. & Pilkington, M. (1992) Magnetic interpretation using the 3‐D analytic signal. Geophysics, 57, 116–125.
    [Google Scholar]
  95. Roy, L., Agarwal, B.N.P. & Shaw, R.K. (2000) A new concept in Euler deconvolution of isolated gravity anomalies. Geophys. Prospect., 48, 559–575.
    [Google Scholar]
  96. Salem, A. & Smith, R. (2005) Depth and structural index from normalized local wavenumber of 2D magnetic anomalies. Geophys. Prospect., 53, 83–89.
    [Google Scholar]
  97. Salfity, J.A. & Gorustovich, S. (1983) Paleogeografía de la cuenca del grupo Paganzo (Paleozoico Superior). Revista de la Asociación Geológica Argentina, 38, 437–453.
    [Google Scholar]
  98. Sasso, A.M. & Clark, A.H. (1998) The Farallón Negro Group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu‐Au metallogeny in the Andean back‐arc. Soc. Econ. Geol. Newsletter, 34 (1), 8–18.
    [Google Scholar]
  99. Silva, J.B.C., Barbosa, V.C.F. & Medeiros, W.E. (2001) Scattering, symmetry, and bias analysis of sourceposition estimates in Euler deconvolution and its practical implications. Geophysics, 66, 1149–1156.
    [Google Scholar]
  100. Sobel, E.R. & Strecker, M.R. (2003) Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina. Basin Res., 15, 431–451.
    [Google Scholar]
  101. Sobel, E.R., Hilley, G.E. & Strecker, M.R. (2003) Formation of internally drained contractional basins by aridity‐limited bedrock incision. J. Geophys. Res., 108(B7), 2344, doi:10.1029/2002JB001883.
    [Google Scholar]
  102. Socic, M.V.J. (1972) Descripción Geológica de la Hoja 14d, Tinogasta, Provincias de Catamarca y La Rioja. Carta Geológico‐Económica de la República Argentina . Boletín Dirección Nacional de Geología y Minería. Boletín Nº129, 54.
    [Google Scholar]
  103. Socic, M.V.J. (1973) Descripción Geológica de la Hoja 14 e, Salar de Pipanaco. Provincias de Catamarca y La Rioja. Ministerio de Industria y Minería. Subsecretaría de Minería. Servicio Nacional Minero Geológico. Boletín N 137, 47 pp.
    [Google Scholar]
  104. Spagnuolo, C., Georgieff, S.M. & Rapalini, A.E. (2010) Stratigraphy and first dating of the Las Arcas formation in the Santa Maria Valley, Salta Province, Argentina. 18th International Sedimentological Congress, 821. International Association of Sedimentologists, Mendoza, Argentina.
  105. Spector, A. & Grant, F.S. (1970) Statical models for interpreting aeromagnetic data. Geophysiccs, 35, 239–302.
    [Google Scholar]
  106. Stavrev, P. & Reid, A. (2010) Euler deconvolution of gravity anomalies from thick contact/fault structures with extended negative structural index. Geophysics, 75, I51–I58.
    [Google Scholar]
  107. Strecker, M.R. (1987) Late Cenozoic Landscape Development, the Santa Maria Valley, Northwest Argentina.Unpublished PhD dissertation, Cornell University, Ithaca, NY, USA, 261 pp.
  108. Strecker, M.R., Bloom, A.L., Carrion, M., Villanueva, A. & Naeser, C. (1984) Piedmont terraces in the Valle de Santa María and in front of southwestern Sierra de Aconquija, provinces of Catamarca, Tucumán and Salta, northwestern Argentina. IX Congreso Geológico Argentino, Bariloche, Argentina, Actas, II, 448–465.
    [Google Scholar]
  109. Strecker, M.R., Cerveny, P., Bloom, A.L. & Malizia, D. (1989) Late Cenozoic tectonism and landscape development in the foreland of the Andes: northern Sierras Pampeanas (26°–28°S), Argentina. Tectonics, 8 (3), 517–534.
    [Google Scholar]
  110. Strecker, M.R., Alonso, R., Bookhagen, B., Carrapa, B., Coutand, I., Hain, M.P., Hilley, G.E., Mortimer, E., Schoenbohm, L. & Sobel, E.R. (2009) Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?Geology, 37, 643–646.
    [Google Scholar]
  111. Tabbutt, K.D. (1986) Fission track chronology of foreland basins in eastern Andes: magmatic and tectonic implications. Unpublished Master Thesis, Dartmouth College, Hanover, USA.
  112. Tassara, A. (2005) Interaction between the Nazca and South American plates and formation of the Altiplano‐Puna Plateau: review of a flexural analysis along the Andean margin (15°–34°S). Tectonophysics, 399, 39–57.
    [Google Scholar]
  113. Tassara, A., Swain, C., Hackney, R. & Kirby, J. (2007) Elastic thickness structure of South America estimated using wavelets and satellite‐derived gravity data. Earth Planet. Sci. Lett., 253, 17–36.
    [Google Scholar]
  114. Tauber, A.A. (2005) Mamíferos fósiles y edad de la Formación Salicas (Mioceno tardío) de la sierra de Velasco, La Rioja, Argentina. Ameghiniana, 42, 443–460.
    [Google Scholar]
  115. Tauber, A.A. (2007) Primer yacimiento de huevos de dinosaurios (Cretácico Superior) de la provincia de La Rioja, Argentina. Ameghiniana, 44 (1), 11–28.
    [Google Scholar]
  116. Thompson, D.T. (1982) EULDPH — A technique for making computer assisted depth estimates from magnetic data. Geophysics, 47, 31–37.
    [Google Scholar]
  117. Torge, W. (2001) Geodesy. 3rd edn, De Gruyter, Berlín, 416 p.
    [Google Scholar]
  118. Tripaldi, A., Net, L., Limarino, C.O., Marenssi, S., Re, G. & Caselli, A. (2001) Paleoambientes sedimentarios y procedencia de la Formación Vinchina, Mioceno, noroeste de la provincia de La Rioja. Revista de la Asociación Geológica Argentina, 56, 443–465.
    [Google Scholar]
  119. Tripaldi, A., Reijenstein, H. & Ciccioli, P.L. (2005) Estudio geomorfológico y sedimentológico preliminar del campo eólico de Belén, provincia de Catamarca, Argentina. XVI Congreso Geológico Argentino, 3, 537–544, La Plata.
    [Google Scholar]
  120. Vázquez, F. (2010) Geología y estratigrafía neógena en la Quebrada del río Las Lajas (Bolsón de Zapata), Catamarca: Su importancia para entender la evolución tectonoestratigráfica en el antepaís fragmentado. Undergraduate Thesis (unpublished) Universidad Nacional de Córdoba, Argentina.
  121. Verdecchia, S.O., Baldo, E.G., Benedetto, J.L. & Borghi, P.A. (2007) The first shelly fauna from metamorphic rocks of the Sierras Pampeanas (La Cébila Formation, Sierra de Ambato, Argentina): age and paleogeographic implications. Ameghiniana, 44 (2), 493–498.
    [Google Scholar]
  122. Webring, M. (1985) SAKI: a fortran program for generalized linear inversion of gravity and magnetic profiles. USGS Open File Report, Reston, USA, 85–122.
  123. Whitman, D., Isacks, B.L. & Kay, S.M. (1996) Lithospheric structure and along‐strike segmentation of the central Andean Plateau: topography, tectonics, and timing. Tectonophysics, 259, 29–40.
    [Google Scholar]
  124. Zhang, C., Mushayandebvu, M.F., Reid, A.B., Fairhead, J.D. & Odegard, M.E. (2000) Euler deconvolution of gravity tensor gradient data. Geophysics, 65, 512–520.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2011.00539.x
Loading
/content/journals/10.1111/j.1365-2117.2011.00539.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error