1887
Volume 25, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Geophysical data and sampling of the Golo Basin (East Corsica margin) provide the opportunity to study mass balance in a single drainage system over the last 130 kyr, by comparing deposited sediments in the sink and the maximum eroded volume in the source using total denudation proxies. Evaluation of the solid sediments deposited offshore and careful integration of uncertainties from the age model and physical properties allow us to constrain three periods of sedimentation during the last climatic cycle. The peak of sedimentation initiated during Marine Isotopic Stage (MIS) 3 (. 45 ka) and lasted until late in MIS 2 (. 18 ka). This correlates with Mediterranean Sea palaeoclimatic records and the glaciation in high altitude Corsica. The yield of solid sediment into the Golo Basin drops in the observed present day Mediterranean basins (gauging stations), whereas the palaeo‐denudation estimate derived from the sediments over the last glacial period is one to ten times higher than that predicted using cosmogenic or thermochronometer estimates of exhumation. The catchment‐wide denudation rate calculated from deposited solid sediment ranges from 47 to 219 mm kyr−1, which is higher than the estimate from palaeosurface ablation in the proximal part of the source (9–140 mm kyr−1) and lower than the distal, narrow, incised channel of the Golo River (160–475 mm kyr−1). This mismatch raises questions about the investigation of denudation at millennial‐time scale (kyr) and at higher integrating times (Myr) as a reliable tool for determining the effect of climate change on mountain building and on sedimentary basin models.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00556.x
2012-07-03
2020-08-04
Loading full text...

Full text loading...

References

  1. Allen, P.A. (1997) Earth Surface Processes. Blackwell, London. 404pp.
    [Google Scholar]
  2. Allen, P.A. (2005) Striking a chord. Nature, 434, 961, doi:10.1038/434961a.
    [Google Scholar]
  3. Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.‐W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhänsli, H., Watts, W.A., Wulf, S. & Zolitschka, B. (1999) Rapid environmental changes in southern Europe during the last glacial period. Nature, 400, 740–743, doi:10.1038/23432.
    [Google Scholar]
  4. Astraldi, M. & Gasparini, G. (1992) The seasonal characteristics of the circulation in the north Mediterranean basin and their relationship with the atmospheric‐climatic conditions. Journal of Geophysical Reseach, 97(C6), 9531–9540.
    [Google Scholar]
  5. Barnes, J.B. & Heins, W.A. (2009) Plio‐Quaternary sediment budget between thrust belt erosion and foreland deposition in the central Andes, southern Bolivia. Basin Research, 21(1), 91–109, doi:10.1111/j.1365‐2117.2008.00372.x.
    [Google Scholar]
  6. Barnes, J.B. & Pelletier, J.D. (2006) Latitudinal variation of denudation in the evolution of the Bolivian Andes. American Journal of Science, 306(1), 1–31, doi:10.2475/ajs.306.1.1.
    [Google Scholar]
  7. Bellaiche, G., Droz, L., Gaullier, V. & Pautot, G. (1994) Small submarine fans on the eastern margin of Corsica: sedimentary significance and tectonic implications. Marine Geology, 117(1–4), 177–185, doi:10.1016/0025‐3227(94)90013‐2.
    [Google Scholar]
  8. Bock, B., Mclennan, S.M. & Hanson, G.N. (1998) Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology, 45(4), 635–655, doi:10.1046/j.1365‐3091.1998.00168.x.
    [Google Scholar]
  9. Boyd, R., Ruming, K., Goodwin, I., Sandstrom, M. & Schröder‐Adams, C. (2008) Highstand transport of coastal sand to the deep ocean: a case study from Fraser Island, southeast Australia. Geol, 36, 15–18, doi:10.1130/G24211A.1.
    [Google Scholar]
  10. Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.J., Flores, J.A. & Shackleton, N. (1999) Dansgaard–Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography, 14(6), 698–705.
    [Google Scholar]
  11. Cacho, I., Grimalt, J.O., Sierro, F.J., Shackleton, N. & Canals, M. (2000) Evidence for enhanced Mediterranean thermohaline circulation during rapid climatic coolings. Earth and Planetary Science Letters, 183(3–4), 417–429.
    [Google Scholar]
  12. Cavazza, W., Zattin, M., Ventura, B. & Zuffa, G.G. (2001) Apatite fission‐track analysis of Neogene exhumation in northern Corsica (France). Terra Nova, 13(1), 51–57, doi:10.1046/j.1365‐3121.2001.00316.x.
    [Google Scholar]
  13. Clevis, Q., De Jager, G., Nijman, W. & De Boer, P.L. (2004) Stratigraphic signatures of translation of thrust‐sheet top basins over low‐angle detachment faults. Basin Research, 16(2), 145–163, doi:10.1046/j.1365‐2117.2003.00226.x.
    [Google Scholar]
  14. Clift, P.D., Hodges, K.V., Heslop, D., Hannigan, R., Van Long, H. & Calvès, G. (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1, 875–880, doi:10.1038/ngeo351.
    [Google Scholar]
  15. Cocco, M., Selvaggi, G., Di Bona, M. & Basili, A. (1993) Recent seismic activity and earthquake occurrence along the Apennines. In: Recent evolution and seismicity of the Mediterranean region (Ed. by E.Boschi , et al.), pp. 259–312. Kluwer Academic Publishers, Dordrecht, the Netherlands.
    [Google Scholar]
  16. Collier, R.E.L., Leeder, M.K., Trout, M., Ferentinos, G., Lyberis, E. & Papatheodorou, G. (2000) High sediment yields and cool, wet winters: test of last glacial paleoclimates in the northern Mediterranean. Geol, 28(11), 999–1002, doi:10.1130/0091‐7613(2000)28<999:HSYACW>2.0.CO;2.
    [Google Scholar]
  17. Conchon, O. (1977) Néotectonique en Corse orientale d'après l'étude des formations quaternaries: comparaison entre la Marana et la plaine d'Aleria. Bulletin de la Société Géologique de France, 19, 631–639.
    [Google Scholar]
  18. Conchon, O. (1978) Quaternary studies in Corsica (France). Quaternary Research, 9(1), 41–53.
    [Google Scholar]
  19. Conchon, O. (1985) Le Quaternaire littoral de Corse: Nouvelles données. Bull. Assoc. Fr. Quat., 1, 13–20.
    [Google Scholar]
  20. Conchon, O. (1986a) Quaternary glaciations in Corsica. Quaternary Science Reviews, 5, 429–432, doi:10.1016/0277‐3791(86)90208‐8.
    [Google Scholar]
  21. Conchon, O. (1986b) Corrélations entre les formations glaciaires, fluviatiles et marines de Corse et les sédiments sous‐marins de Méditerranée occidentale au Pléistocène supérieur. Rev. Geol. Dyn. Geogr. Phys., 27, 85–93.
    [Google Scholar]
  22. Danišík, M., Kuhlemann, J., Dunkl, I., Székely, B. & Frisch, W. (2007) Burial and exhumation of Corsica (France) in the light of fission track data. Tectonics, 26, TC1001, doi:10.1029/2005TC001938.
    [Google Scholar]
  23. Davies, T.A., Hay, W.W., Southam, J.R. & Worsley, T.R. (1977) Estimates of cenozoic oceanic sedimentation rates. Science, 197, 53–55.
    [Google Scholar]
  24. De Martonne, E. (1910) L'érosion glaciaire et la formation des vallées alpines. Annales de Géographie, 19(106), 289–317. doi:10.3406/geo.1910.7632.
    [Google Scholar]
  25. Deptuck, M.E., Piper, D.J.W., Savoye, B. & Gervais, A. (2008) Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55(4), 869–898, doi:10.1111/j.1365‐3091.2007.00926.x.
    [Google Scholar]
  26. Erickson, S.N. & Jarrard, R.D. (1998) Velocity‐porosity relationships for water‐saturated siliciclastic sediments. Journal of Geophysical Reseach, 103(B12), 30385–30406.
    [Google Scholar]
  27. Fedo, C.M., Nesbitt, H.W. & Young, G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geol, 23(10), 921–924, doi:10.1130/0091‐7613(1995)023<0921:UTEOPM>2.3.CO;2.
    [Google Scholar]
  28. Fellin, M.G., Picotti, V. & Zattin, M. (2005a) Neogene to Quaternary rifting and inversion in Corsica: retreat and collision in the western Mediterranean. Tectonics, 24, TC1011, doi:10.1029/2003TC001613.
    [Google Scholar]
  29. Fellin, M.G., Zattin, M., Picotti, V., Reiners, P.W. & Nicolescu, S. (2005b) Relief evolution in northern Corsica (western Mediterranean): constraints on uplift and erosion on long‐term and short‐term timescales. Journal of Geophysical Reseach, 110, F01016, doi:10.1029/2004JF000167.
    [Google Scholar]
  30. Fellin, M.G., Vance, J.A., Garver, J.I. & Zattin, M. (2006) The thermal evolution of Corsica as recorded by zircon fission‐tracks. Tectonophysics, 421(3–4)299–317, doi:10.1016/j.tecto.2006.05.001.
    [Google Scholar]
  31. Flemming, B.W. (1981) Factors controlling shelf sediment dispersal along the southeast African continental margin. Marine Geology, 42(1–4), 259–277, doi:10.1016/0025‐3227(81)90166‐3.
    [Google Scholar]
  32. Florineth, D. & Schluchter, C. (1998) Reconstructing the Last Glacial Maximum (LGM) ice surface geometry and flowlines in the central Swiss Alps. Eclogae Geologicae Helvetiae, 91(3), 391–407.
    [Google Scholar]
  33. Gervais, A. (2002) Analyse multi‐échelles de la morphologie, de la géométrie et de l'architecture d'un système turbiditique sableux profond (système du Golo, marge est Corse, mer Méditerranée). Unpublished PhD Thesis, University Bordeaux 1, no.2621, 285 pp. http://www.asf.epoc.u-bordeaux1.fr/theses/Manuscrits/GERVAIS_2002.pdf. Accessed 25 June 2012.
  34. Gervais, A., Savoye, B., Piper, D.J.W., Mulder, T., Cremer, M. & Pichevin, L. (2004) Present morphology and depositional architecture of a sandy confined submarine system: the Golo turbidite system (eastern margin of Corsica). Geol. Soc. London Spec. Publ., 222, 59–89, doi:10.1144/GSL.SP.2004.222.01.05.
    [Google Scholar]
  35. Gervais, A., Mulder, T., Savoye, B. & Gonthier, E. (2006a) Sediment distribution and evolution of sedimentary processes in a small sandy turbidite system (Golo system Mediterranean Sea): implications for various geometries based on core framework. Geo‐Marine Letters, 26(6), 373–395, doi:10.1007/s00367‐006‐0045‐z.
    [Google Scholar]
  36. Gervais, A., Savoye, B., Mulder, T. & Gonthier, E. (2006b) Sandy modern turbidite lobes: a new insight from high resolution seismic data. Marine and Petroleum Geology, 23(4), 485–502, doi:10.1016/j.marpetgeo.2005.10.006.
    [Google Scholar]
  37. Giraudi, C. & Frezzotti, M. (1997) Late Pleistocene glacial events in the central Apennines, Italy. Quaternary Research, 48(3), 280–290, doi:10.1006/qres.1997.1928.
    [Google Scholar]
  38. Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., Collins, J.A. & Chiessi, C.M. (2012) Distribution of major elements in Atlantic surface sediments (36°N–49°S): Imprint of terrigenous input and continental weathering. Geochem. Geophys. Geosys., 13, Q01013, doi:10.1029/2011GC003785.
    [Google Scholar]
  39. Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S. & Jouzel, J. (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552–554, doi:10.1038/366552a0.
    [Google Scholar]
  40. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Le Carlier De Veslud, C. & Braun, J. (2012) Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: a new method applied to the Namibia–South Africa margin. Basin Research, 24(1), 3–30, doi:10.1111/j.1365‐2117.2011.00511.x.
    [Google Scholar]
  41. Hemming, S.R. (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Review of Geophysics, 42(1): RG1005 1–43.
    [Google Scholar]
  42. Hinderer, M. (2001) Late Quaternary denudation of the Alps valley and lake fillings and modern river loads. Geodinamica Acta, 14(4), 231–263, doi:10.1016/S0985‐3111(01)01070‐1.
    [Google Scholar]
  43. Hovius, N. (1998) Controls on sediment supply by large rivers. In: Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks (Ed. By ShanleyK.W. McCabeP.J. ), SEPM (Society for Sedimentary Geology) Special Publication, 59, 3–16, Tulsa, Oklahoma.
    [Google Scholar]
  44. Hovius, N., Stark, C.P. & Allen, P.A. (1997) Sediment flux from a mountain belt derived by landslide mapping. Geol, 25(3), 231–234, doi:10.1130/0091‐7613(1997)025<0231:SFFAMB>2.3.CO;2.
    [Google Scholar]
  45. Jorry, S.J., Droxler, A.W., Mallarino, G., Dickens, G.R., Bentley, S.J., Beaufort, L., Peterson, L.C. & Opdyke, B.N. (2008) Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: linking sediment nature and accumulation to sea level fluctuations at millennial timescale. J. Geophys. Res.‐Earth Surface, 113(F1), doi:10.1029/2006jf000649.
    [Google Scholar]
  46. Jorry, S.J., Jegou, I., Emmanuel, L., Silva Jacinto, R. & Savoye, B. (2011) Turbiditic levee deposition in response to climate changes: the Var Sedimentary Ridge (Ligurian Sea). Marine Geology, 279, 148–161.
    [Google Scholar]
  47. Kallel, N., Duplessy, J.C., Labeyrie, L., Fontugne, M., Paterne, M. & Montacer, M. (2000) Mediterranean pluvial periods and sapropel formation over the last 200 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 157, 45–58.
    [Google Scholar]
  48. Kettner, A.J. & Syvitski, J.P.M. (2008) Predicting discharge and sediment flux of the Po River, Italy since the Last Glacial Maximum. Spec. Publ. Int. Assoc. Sedimentol, 40, 171–189.
    [Google Scholar]
  49. Kettner, A.J. & Syvitski, J.P.M. (2009) Fluvial responses to environmental perturbations in the Northern Mediterranean since the Last Glacial Maximum. Quaternary Science Reviews, 28(23–24), 2386–2397, doi:10.1016/j.quascirev.2009.05.003.
    [Google Scholar]
  50. Kuhlemann, J., Frisch, W., Székely, B., Dunkl, I., Danišik, M. & Krumrei, I. (2005) Würmian maximum glaciation in Corsica: glacier extent, amplifying paleorelief, and mesoscale climate. Austrian J. Earth Sci., 97, 68–81.
    [Google Scholar]
  51. Kuhlemann, J., Rohling, E.J., Krumrei, I., Kubik, P., Ivy‐Ochs, S. & Kucera, M. (2008) Circulation during the last glacial maximum regional synthesis of Mediterranean atmospheric. Science, 321, 1338–1340, doi:10.1126/science.1157638.
    [Google Scholar]
  52. Kuhlemann, J., Krumrei, I., Danisik, M. & Klaas Van Der, B. (2009) Weathering of granite and granitic regolith in Corsica: short‐term 10Be versus long‐term thermochronological constraints. In: Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models (Ed. by F., Lisker , B.,Ventura & U.A., Glasmacher ) Geol. Soc. London Spec. Publ., 324, 217–235, doi:10.1144/SP324.16.
    [Google Scholar]
  53. Lahondère, J.‐C., Conchon, O. & Lahondère, D. (1994) Vescovato Carte Géologique de France, Map 1107, scale 1/50000. BRGM, Orléans, France.
    [Google Scholar]
  54. Lisiecki, L.E. & Raymo, M.E. (2005) A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003.
    [Google Scholar]
  55. Lisker, F., Ventura, B. & Glasmacher, U.A. (2009) Apatite thermochronology in modern geology. In: Thermochronological Methods: From Paleotemperature Constrains to Landscape Evolution Models (Ed. by F.Lisker , B.Ventura & U.A.Glasmacher ), Geol. Soc. London Spec. Publ., 324, 1–23, doi:10.1144/SP324.1.
    [Google Scholar]
  56. Lucazeau, F. & Mailhe, D. (1986) Heat flow, heat production and fission track data from the Hercynian basement around the Provencal Basin (Western Mediterranean). Tectonophysics, 128(3–4), 335–356, doi:10.1016/0040‐1951(86)90300‐8.
    [Google Scholar]
  57. Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Jr & Shackleton, N.J. (1987) Age dating and the orbital theory of the ice ages: development of a high‐resolution 0 to 300,000‐year chronostratigraphy. Quaternary Research, 27(1), 1–29, doi:10.1016/0033‐5894(87)90046‐9.
    [Google Scholar]
  58. Martrat, B., Grimalt, J.O., Lopez‐Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H. & Hodell, D.A. (2004) Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science, 306(5702), 1762–1765, doi:10.1126/science.1101706.
    [Google Scholar]
  59. Mauffret, A., Contrucci, I. & Brunet, C. (1999) Structural evolution of the Northern Tyrrhenian Sea from new seismic data. Marine and Petroleum Geology, 16(5), 381–407, doi:10.1016/S0264‐8172(99)00004‐5.
    [Google Scholar]
  60. MEDIMAP GROUP
    MEDIMAP GROUP , Loubrieu, B., Mascle, J., et al. (2005) Morpho‐bathymetry of the Mediterranean Sea, CIESM/Ifremer special publication, Atlases and Maps, two maps at 1/2 000 000, link: http://wwz.ifremer.fr/drogm/cartographie/mediterranee/synthese_carto_mediterranee.
  61. Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys J Int, 137(2), 280–318, doi:10.1046/j.1365‐246X.1999.00802.x.
    [Google Scholar]
  62. Milliman, J.D. & Syvitski, J.P.M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100, 525–544, doi:10.1086/629606.
    [Google Scholar]
  63. Mitchum, R.M., Vail, P.R. & Sangree, J.B. (1977) Stratigraphic interpretation of seismic reflection patterns in depositional sequences. part 6. In: Seismic Stratigraphy—Application to Hydrocarbon Exploration, 8th edn (Ed by C.E.Payton ), pp. 117–133. AAPG, Tulsa, Oklahoma.
    [Google Scholar]
  64. Nesbitt, H.W. & Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochemica et Cosmochimica Acta, 48(7), 1523–1534, doi:10.1016/0016‐7037(84)0408‐3.
    [Google Scholar]
  65. NGRIP‐members
    NGRIP‐members (2004) High resolution climate record of the northern hemisphere reaching into the last interglacial period. Nature, 431, 147–151.
    [Google Scholar]
  66. Norton, K.P., Abbühl, L.M. & Schlunegger, F. (2010) Glacial conditioning as an erosional driving force in the Central Alps. Geol, 38, 655–658, doi:10.1130/G31102.1.
    [Google Scholar]
  67. Pascucci, V., Merlini, S. & Martini, I.P. (1999) Seismic stratigraphy of the Miocene–Pleistocene sedimentary basins of the Northern Tyrrhenian Sea and western Tuscany (Italy). Basin Research, 11(4), 337–356, doi:10.1046/j.1365‐2117.1999.00104.x.
    [Google Scholar]
  68. Paterne, M., Kallel, N., Labeyrie, L., Vautravers, M., Duplessy, J.C., Rossignol‐Strick, M., Cortijo, E., Arnold, M. & Fontugne, M. (1999) Hydrological relationship between the North Atlantic Ocean and the Mediterranean Sea during the past 15–75 kyr. Paleoceanography, 14, 626–638.
    [Google Scholar]
  69. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sediment Research, 73(3), 367–388, doi:10.1306/111302730367.
    [Google Scholar]
  70. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Mccormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J., Turney, C.S.M., Vander Plicht, J. & Weyhenmeyer, C. (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51(4), 1111–1150.
    [Google Scholar]
  71. Richter, T.O., Van Der Gaast, S., Koster, B., Vaars, A., Gieles, R., De Stigter, H.C., De Haas, H. & Van Weering, T.C.E. (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments, In: New Techniques in Sediment Core Analysis (Ed. by R.G.Rothwell ), Geol. Soc. London Spec. Publ., 267, 39–50, doi:10.1144/GSL.SP.2006.267.01.03.
    [Google Scholar]
  72. Rittenour, T.M. (2008) Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas, 37, 613–635, doi:10.1111/j.1502‐3885.2008.00056.x.
    [Google Scholar]
  73. Roveri, M. (2002) Sediment drifts of the Corsica Channel, northern Tyrrhenian Sea, In: Deep‐Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics (Ed. by D.A.V.Stow , C.J.Pudsey , J.A.Howe , J.‐C.Faugères & A.R.Viana ), Geological Society, London, Memoirs, 22, 191–208, doi:10.1144/GSL.MEM.2002.022.01.14.
    [Google Scholar]
  74. Sanchez Goni, M.F., Cacho, I., Turon, J.L., Guiot, J., Sierro, F.J., Peypouquet, J.‐P., Grimalt, J.O. & Shackleton, N.J. (2002) Synchroneity between marine and terrestrial responses to millenial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics, 19, 95–105.
    [Google Scholar]
  75. Shackleton, N.J., Hall, M.A. & Vincent, E. (2000) Phase relationships between millennial‐scale events 64,000‐24,000 years ago. Paleoceanography, 15, 565–569.
    [Google Scholar]
  76. Sierro, F.J., Andersen, N., Bassetti, M.A., Berné, S., Canals, M., Curtis, J.H., Dennielou, B., Flores, J.A., Frigola, J., Gonzalez‐Mora, B., Grimalt, J.O., Hodell, D.A., Jouet, G., Pérez‐Folgado, M. & Schneider, R. (2009) Phase relationship between sea level and abrupt climate changes. Quaternary Science Reviews, 28(25–26), 2867–2881.
    [Google Scholar]
  77. Sømme, T.O., Helland‐Hansen, W., Martinsen, O.J. & Thurmond, J.B. (2009) Relationships between morphological and sedimentological parameters in source‐to‐sink systems: a basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21(4), 361–387, doi:10.1111/j.1365‐2117.2009.00397.x.
    [Google Scholar]
  78. Sømme, T.O., Piper, D.J.W., Deptuck, M.E. & Helland‐Hansen, W. (2011) Linking onshore‐offshore sediment dispersal in the Golo source‐to‐sink system (Corsica, France) during late Quaternary. Journal of Sediment Research, 81(2), 118–137, doi:10.2110/jsr.2011.11.
    [Google Scholar]
  79. Stanley, D.J. (1989) Sediment transport on the coast and shelf between the Nile Delta and Israeli margin as determined by heavy minerals. Journal of Coastal Research, 5(4), 813–828.
    [Google Scholar]
  80. Stanley, D.J., Rehault, J.‐P. & Stuckenrath, R. (1980) Turbid‐layer bypassing model: the Corsican Trough, northwestern Mediterranean. Marine Geology, 37(1–2), 19–40, doi:10.1016/0025‐3227(80)90010‐9.
    [Google Scholar]
  81. Stuiver, M. & Reimer, P.J. (1993) Extended 14C data base and revised CALIB radiocarbon calibration program. Radiocarbon, 35, 215–230.
    [Google Scholar]
  82. Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl‐Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., R"Othlisberger, R., Seierstad, I., Steffensen, J.P. & Vinther, B.M. (2008) A 60000 year Greenland stratigraphic ice core chronology. Clim. Past, 4, 47–57.
    [Google Scholar]
  83. Syvitski, J.P.M. & Milliman, J.D. (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. Journal of Geology, 115(1), 1–19, doi:10.1086/509246.
    [Google Scholar]
  84. Syvitski, J.P. & Morehead, M.D. (1999) Estimating river‐sediment discharge to the ocean: application to the Eel Margin, northern California. Marine Geology, 154, 13–28, doi:10.1016/S0025‐3227(98)00100‐5.
    [Google Scholar]
  85. Toucanne, S., Zaragosi, S., Bourillet, J.F., Naughton, F., Cremer, M., Eynaud, F. & Dennielou, B. (2008) Activity of the turbidite levees of the Celtic‐Armorican margin (Bay of Biscay) during the last 30,000 years: imprints of the last European deglaciation and Heinrich events. Marine Geology, 247(1–2), 84–103, doi:10.1016/j.margeo.2007.08.008.
    [Google Scholar]
  86. Toucanne, S., Zaragosi, S., Bourillet, J.‐F., Marieu, V., Cremer, M., Kageyama, M., Van Vliet‐Lanoe, B., Eynaud, F., Turon, J.‐L. & Gibbard, P.L. (2010) The first estimation of Fleuve Manche palaeoriver discharge during the last deglaciation: evidence for Fennoscandian ice sheet meltwater flow in the English Channel ca. 20–18 ka ago. Earth and Planetary Science Letters, 290(3–4), 459–473, doi:10.1016/j.epsl.2009.12.050.
    [Google Scholar]
  87. Toucanne, S., Jouet, G., Dennielou, B., Ducassou, E., Bassetti, M.A., Angue Minto'o, C., Lahmi, M., Touyet, N., Charlier, K., Lericolais, G. & Mulder, T. (2012) A 130,000‐year record of Levantine Intermediate Water flow variability in the Corsica Trough, western Mediterranean Sea. Quaternary Science Reviews, 33, 55–73, doi:10.1016/j.quascirev.2011.11.020.
    [Google Scholar]
  88. Turcotte, D.L. & Schubert, G. (2002) Geodynamics. 2nd edn, Cambridge University Press, Cambridge, 472pp.
    [Google Scholar]
  89. Tzedakis, P.C., Mcmanus, J.F., Hooghiemstra, H., Oppo, D.W. & Wijmstra, T.A. (2003) Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years. Earth and Planetary Science Letters, 212(1–2), 197–212, doi:10.1016/S0012‐821X(03)00233‐4.
    [Google Scholar]
  90. Valla, P.G., Herman, F., Van Der Beek, P.A. & Braun, J. (2010) Inversion of thermochronological age‐elevation profiles to extract independent estimates of denudation and relief history — I: theory and conceptual model. Earth and Planetary Science Letters, 295(3–4), 511–522, doi:10.1016/j.epsl.2010.04.033.
    [Google Scholar]
  91. Van Der Beek, P.A., Valla, P.G., Herman, F., Braun, J., Persano, C., Dobson, K.J. & Labrin, E. (2010) Inversion of thermochronological age–elevation profiles to extract independent estimates of denudation and relief history — II: application to the French Western Alps. Earth and Planetary Science Letters, 296(1–2), 9–22, doi:10.1016/j.epsl.2010.04.032.
    [Google Scholar]
  92. Von Blanckenburg, F. (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth and Planetary Science Letters, 237, 462–479, doi:10.1016/j.epsl.2005.06.030.
    [Google Scholar]
  93. Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., Mcmanus, J.F., Lambeck, K., Balbon, E. & Labracherie, M. (2002) Sea‐level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1–3), 295–305, doi:10.1016/S0277‐3791(01)00101‐9.
    [Google Scholar]
  94. Walford, H.L., White, N.J. & Sydow, J.C. (2005) Solid sediment load history of the Zambezi Delta. Earth and Planetary Science Letters, 238(1–2), 49–63, doi:10.1016/j.epsl.2005.07.014.
    [Google Scholar]
  95. Willenbring, J.K. & Von Blanckenburg, F. (2010) Long‐term stability of global erosion rates and weathering during late‐Cenozoic cooling. Nature, 465, 211–214, doi:10.1038/nature09044.
    [Google Scholar]
  96. Willett, S.D., Schlunegger, F. & Picotti, V. (2006) Messinian climate change and erosional destruction of the central European Alps. Geol, 34, 613–616.
    [Google Scholar]
  97. Zarki‐Jakni, B., Van Der Beek, P., Poupeau, G., Sosson, M., Labrin, E., Rossi, P. & Ferrandini, J. (2004) Cenozoic denudation of Corsica in response to Ligurian and Tyrrhenian extension: results from apatite fission track thermochronology. Tectonics, 23, TC1003, doi:10.1029/2003TC001535.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00556.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00556.x
Loading

Data & Media loading...

Supplements

(A) Time–depth plot from measurement P wave velocity on core data Kco and MD, and processing stacking velocity of seismic reflection data. (B) Porosity decay for core MD01‐2472 and projected range of porosity curve predicted (see text for details).

P wave velocity – porosity plot for core MD01‐2472. Curves for normal and high consolidation of sediments are from Erickson and Jarrard [1998].

Core information and location processed for this study.

Radiocarbon ages of MD‐ and Kco‐cores.

WORD

Thickness, volumetric and age model of units and architectural elements in the Golo Basin.

Parameters used for the source to sink balance.

Denudation rate compilation of various sources and time scale recorded from Corsica.

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error