1887
Volume 25, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Decaying mountain ranges often show a surprisingly dynamic pattern of landscape evolution. Although one might expect a simple, monotonic decline in relief over time, evidence from several inactive mountain ranges shows alternating sequences of deposition and erosion in the associated basins, suggesting variations in relief and exhumation rate in the ranges themselves. Examples include the Southern Rocky Mountains, the Pyrenees, the European Alps and the Atlas Mountains. In this paper, we explore the possible origins of post‐orogenic landscape dynamics using a simple mathematical model of a mountain range and an adjacent foreland basin. The analysis highlights the importance of mass balance. In particular, a switch from basin exhumation to renewed sedimentation requires either an increase in sediment influx from the range or a decrease in sediment outflux beyond the basin margin. Although it is widely understood that post‐orogenic changes in erosion and sediment flux can have multiple causes (including climate change, regional tectonic uplift or tilting, or exhumation of variable lithologies), an important implication of our analysis is that the impact of such changes must differ in sign or magnitude between the range and the basin to be recorded. This requirement places an important constraint on viable explanations for alternating sequences of deposition and erosion in a decaying mountain‐basin pair.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00559.x
2012-08-07
2024-03-28
Loading full text...

Full text loading...

References

  1. Aalto, R., Dunne, T. & Guyot, J. (2006) Geomorphic controls on andean denudation rates. J. Geol., 114(1), 85–99.
    [Google Scholar]
  2. Ahnert, F. (1970) Functional relationships between denudation, relief, and uplift in large, mid‐latitude drainage basins. Amer. J. Sci., 268(3), 243.
    [Google Scholar]
  3. Anderson, R. (1998) Near‐surface thermal profiles in alpine bedrock: Implications for the frost weathering of rock. Arctic Alpine Res., 30(4), 362–372.
    [Google Scholar]
  4. Anderson, R.S., Molnar, P. & Kessler, M.A. (2006a) Features of glacial valley profiles simply explained. J. Geophys. Res‐Earth , 111(F1), doi:10.1029/2005JF000344.
    [Google Scholar]
  5. Anderson, R.S., Riihimaki, C.A., Safran, E.B. & MacGregor, K.R. (2006b) Facing reality: late cenozoic evolution of smooth peaks, glacially ornamented valleys and deep river gorges of colorado 's front range. GSA Spec. Pub., 398, 397–418.
    [Google Scholar]
  6. Babault, J., Teixell, A., Arboleya, M.L. & Charroud, M. (2008) A Late Cenozoic age for long‐wavelength surface uplift of the Atlas Mountains of Morocco. Terra Nova, 20(2), 102–107.
    [Google Scholar]
  7. Baldwin, J., Whipple, K. & Tucker, G. (2003) Implications of the shear stress river inci sion model for the timescale of postorogenic decay of topography. J. Geophys. Res., 108(B3), 2158.
    [Google Scholar]
  8. Balestrieri, M.L., Moratti, G., Bigazzi, G. & Algouti, A. (2009) Neogene exhumation of the Marrakech High Atlas (Morocco) recorded by apatite fission‐track analysis. Terra Nova, 21(2), 75–82.
    [Google Scholar]
  9. Beamud, E., Muñoz, J.A., Fitzgerald, P.G., Baldwin, S.L., Garcés, M., Cabrera, L. & Metcalf, J.R. (2011) Magnetostratigraphy and detrital apatite fission track ther mochronology in syntectonic conglomerates: constraints on the exhumation of the South‐Central Pyrenees. Basin Res., 23(3), 309–331.
    [Google Scholar]
  10. Beauchamp, W., Allmendinger, R., Barazangi, M., Demnati, A., Alji, M.E. & Dahmani, M. (1999) Inversion tectonics and the evolution of the High AtlasMountains, Morocco, based on a geological geophysical transect. Tectonics, 18(2), 163–184.
    [Google Scholar]
  11. Beaumont, C., Muuñoz, J., Hamilton, J. & Fullsack, P. (2000) Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. J. Geophys. Res., 105, 8121–8145.
    [Google Scholar]
  12. van der Beek, P. & Braun, J. (1998) Numerical modelling of landscape evolution on geological time‐scales: a parameter analysis and comparison with the south‐eastern highlands of Australia. Basin Res., 10(1), 49–68.
    [Google Scholar]
  13. Berger, J.P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., Storni, A., Pirkenseer, C. & Schaefer, A. (2005) Eocene‐Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). Int. J. Earth Sci., 94, 711–731.DOI: 10.1007/s00531‐005‐0479‐y.
    [Google Scholar]
  14. Braun, J. (2010) The many surface expressions of mantle dynamics. Nat. Geosci., 3(12), 825–833.
    [Google Scholar]
  15. Bruch, A.A., Uhl, D., and Mosbrugger, V. (2007) Miocene climate in Europe ‐ Patterns and evolution: A first synthesis of NECLIME. Palaeogeogr., Palaeoclimatol., Palaeoecol., 253(1–2), 1–7.
    [Google Scholar]
  16. Bryant, B. & Naeser, C. (1980) The significance of fission‐track ages of apatite in relation to the tectonic history of the Front and Sawatch Ranges, Colorado. Bulletin of the Geological Society of America, 91(3), 156.
    [Google Scholar]
  17. Bryant, B., MacGrew, L. & Wobus, R. (1981a) Geologic Map of the Denver 1 x 2 Quad718 rangle, North‐central Colorado. US Geological Survey.
    [Google Scholar]
  18. Bryant, B., Marvin, R., Naeser, C. & Mehnert, H. (1981b) Ages of igneous rocks in the South Park‐Breckenridge region, Colorado, and their relation to the tectonic history of the Front Range uplift. Geol. Surv. prof. paper, 1199, 15.
    [Google Scholar]
  19. Bull, W. (1991) Geomorphic Responses to Climatic Change. Oxford University Press, New York, NY .
    [Google Scholar]
  20. Burkhard, M. & Sommaruga, A. (1998) Evolution of the western Swiss Molasse basin: structural relations with the Alps and the Jura belt. In: Cenozoic Foreland Basins of Western Europe (Ed. by A. Mascle , C. Puigdefàbregas , H. Luterbacher & M. Fernàndez ), pp. 279–298. Geological Society, London. Vol. 134 of Geological Society Special Publications.
    [Google Scholar]
  21. Calais, E., Nocquet, J.‐M., Jouanne, F. & Tardy, M. (2002) Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996–2001 . Geology, 30(7), 651–654.
    [Google Scholar]
  22. Carroll, A., Chetel, L. & Smith, M. (2006) Feast to famine: sediment supply control on Laramide basin fill. Geology, 34(3), 197–200.
    [Google Scholar]
  23. Cederbom, C.E., Sinclair, H.D., Schlunegger, F. & Rahn, M.K. (2004) Climate‐induced rebound and exhumation of the European Alps. Geology, 32(8), 709–712.
    [Google Scholar]
  24. Cederbom, C.E., der Beek, P., Schlunegger, F., Sinclair, H.D. & Oncken, O. (2011) Rapid extensive erosion of the North Alpine foreland basin at 5–4 Ma. Basin Res., 23, 528–550.
    [Google Scholar]
  25. Chapin, C. & Cather, S. (1981) Eocene tectonics and sedimentation in the Colorado Plateau‐Rocky Mountain area. Relations of tectonics to ore deposits in the southern Cordillera: Arizona Geological Society Digest, 14, 173–198.
    [Google Scholar]
  26. Coney, P.J., Muñoz, J., McClay, K.R. & Evenchick, C.A. (1996) Syntectonic burial and post‐tectonic exhumation of the southern Pyrenees foreland fold‐thrust belt. J. Geol. Soc. London, 153(1), 9–16.
    [Google Scholar]
  27. Costa, E., Garcés, M., López‐Blanco, M., Beamud, E., Gómez‐Paccard, M. & Larrasoaña, J.C. (2010) Closing and continentalization of the South Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Res., 22(6), 904–917.
    [Google Scholar]
  28. Courtright, T. & Braddock, W. (1989) Geologic Map of the Table Mountain Quadrangle and Adjacent Parts of the Round Butte and Buckeye Quadrangles, Larimer County, Colorado, and Laramie County, Wyoming. US Geological Survey, Miscellaneous Investigations Series Map I‐1805, scale 1:24000.
    [Google Scholar]
  29. Curnelle, R., Dubois, P. & Seguin, J.C. (1982) The Mesozoic‐Tertiary evolution of the aquitaine basin. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci., 305(1489), 63–84.
    [Google Scholar]
  30. Delunel, R., der Beek, P.A., Carcaillet, J., Bourlès, D.L. & Valla, P.G. (2010) Frost‐cracking control on catchment denudation rates: Insights from in situ produced Be concentrations in stream sediments (Ecrins‐Pelvoux massif, French Western Alps). Earth Planetary Sci. Lett., 293(1–2), 72–83.
    [Google Scholar]
  31. Desegaulx, P., Roure, F. & Villein, A. (1990) Structural evolution of the Pyrenees: tectonic inheritance and flexural behaviour in the continental crust. Tectonophysics, 182(3–4), 211–225.paleomagnetic Constraints on Crustal Motions.
    [Google Scholar]
  32. DiBiase, R., Whipple, K., Heimsath, A. & Ouimet, W. (2010) Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth Planetary Sci. Lett., 289(1–2), 134–144.
    [Google Scholar]
  33. Dickinson, W., Klute, M., Hayes, M., Janecke, S., Lundin, E., McKittrick, M. & Olivares, M. (1988) Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. GSA Bull., 100(7), 1023.
    [Google Scholar]
  34. Eaton, G. (2008) Epeirogeny in the Southern Rocky Mountains region: evidence and origin. Geosphere, 4(5), 764.
    [Google Scholar]
  35. Egholm, D.L., Nielsen, S.B., Pedersen, V.K. & Lesemann, J.E. (2009): Glacial effects limiting mountain height. Nature, 460, 884–887.
    [Google Scholar]
  36. El Harfi, A., Lang, J., Salomon, J. & Chellai, E. (2001) Cenozoic sedimentary dynamics of the Ouarzazate foreland basin (Central High Atlas Mountains, Morocco). Int. J. Earth Sci., 90, 393–411.DOI: 10.1007/s005310000115.
    [Google Scholar]
  37. Epis, R. & Chapin, C. (1974) Stratigraphic Nomenclature of the Thirtynine Mile volcanic field, Central Colorado. US Govt. Print. Off, Washington.
    [Google Scholar]
  38. Epis, R. & Chapin, C. (1975) Geomorphic and tectonic implications of the post‐Laramide, late Eocene erosion surface in the southern Rocky Mountains. Cenozoic history of the southern Rocky Mountains: Geological Society of America Memoir, 144, 45‐74.
    [Google Scholar]
  39. Epis, R., Scott, G., Taylor, R., & Chapin, C. (1980) Summary of Cenozoic geomorphic, volcanic and tectonic features of central Colorado and adjoining areas. In: Colorado Geology (Ed. by H.C. Kent & K.W.Porter ), pp. 135–156. Rocky Mountain Association of Geologists, Denver, CO.
    [Google Scholar]
  40. Evanoff, E., McIntosh, W. & Murphey, P. (2001) Stratigraphic summary and 40Ar/39Argeochronology of the Florissant Formation, Colorado. Proc. Denver Museum Nat. Sci., 4, 1–16.
    [Google Scholar]
  41. Fillon, C. & van der Beek, P.A. (2012) Post‐orogenic evolution of the southern Pyrenees constrained by inverse thermo‐kinematic modelling of low‐temperature thermochronology data. Basin Res., 24, 418‐436.
    [Google Scholar]
  42. Frizon de Lamotte, D., Saint Bezar, B., Bracèene, R. & Mercier, E. (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19(4), 740–761.
    [Google Scholar]
  43. Frizon de Lamotte, D., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiqi, O., Guil locheau, F. & Michard, A. (2009) Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics, 475(1), 9–28.The geology of vertical movements of the lithosphere.
    [Google Scholar]
  44. Garcia‐Castellanos, D., Vergés, J., Gaspar‐Escribano, J. & Cloetingh, S. (2003) Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). J. Geophys. Res., 108(B7), 2347.
    [Google Scholar]
  45. Granger, D., Kirchner, J. & Finkel, R. (1996) Spatially averaged long‐term erosion rates measured from in situ‐produced cosmogenic nuclides in alluvial sediment. J. Geo., 104(3), 249‐257.
    [Google Scholar]
  46. Gregory, K. & Chase, C. (1994) Tectonic and climatic significance of a late Eocene low‐relief, high‐level geomorphic surface, Colorado. J. Geophys. Res., 99(B10), 20141‐20.
    [Google Scholar]
  47. Hager, B. & Richards, M. (1989) Long‐wavelength variations in Earth's geoid: physical models and dynamical implications. Philos. Trans. R. Soc. Lond. A, 328(1599), 309.
    [Google Scholar]
  48. Hales, T. & Roering, J. (2005) Climate‐controlled variations in scree production, Southern Alps, New Zealand. Geology, 33(9), 701.
    [Google Scholar]
  49. Hales, T. & Roering, J. (2007) Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. J. Geophys. Res., 112(F02033), 14.
    [Google Scholar]
  50. Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E. & Bernoulli, D. (2010) Reconciling plate‐tectonic reconstructions of Alpine Tethys with the geological‐geophysical record of spreading and subduction in the Alps. Earth‐Sci. Rev., 102(3–4), 121–158.
    [Google Scholar]
  51. Hooke, R. (2003) Time constant for equilibration of erosion with tectonic uplift. Geology, 31(7), 621.
    [Google Scholar]
  52. Hovius, N. (1998) Controls on sediment supply by large rivers. SEPM Special Publication, 59, 3–16.
    [Google Scholar]
  53. Icole, M. (1968) Données nouvelles sur la formation de Lannemezan. Comptes Rendus del'Académie de Sciences, Paris, 266, 204–207.
    [Google Scholar]
  54. Izett, G. (1975) Late Cenozoic sedimentation and deformation in northern Colorado and adjoining areas. Cenozoic history of the southern Rocky Mountains: Geological Society of America Memoir, 144, 179–209.
    [Google Scholar]
  55. Johnson, K. & Raynolds, R. (2005) Ancient Denvers: Scenes from the Past 300 Million Years of the Colorado Front Range. Fulcrum Publishing, Golden, CO.
    [Google Scholar]
  56. Jolivet, M., Labaume, P., Monié, P., Brunel, M., Arnaud, N. & Campani, M. (2007) Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France‐Spain). Tectonics, 26(TC5007), ???–???.DOI: 10.1029/2006TC002080.
    [Google Scholar]
  57. Krijgsman, W., Langereis, C., Daams, R. & van der Meulen, A. (1994) Magnetostratigraphic dating of the middle Miocene climate change in the continental deposits of the Aragonian type area in the Calatayud‐Teruel basin (Central Spain). Earth Planetary Sci. Lett., 128(3–4), 513–526.
    [Google Scholar]
  58. Kuhlemann, J. (2007) Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the Oligocene. Global Planet Change, 58(1–4), 224–236.
    [Google Scholar]
  59. Kuhlemann, J. & Kempf, O. (2002) Post‐Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment. Geol., 152(1–2), 45–78.
    [Google Scholar]
  60. Lague, D., Hovius, N. & Davy, P. (2005) Discharge, discharge variability, and the bedrock channel profile. J. Geophys. Res, 110(F04006), doi:10.1029/2004JF000259.
    [Google Scholar]
  61. Lanaja, J.M., Querol, R. & Navarro, A. (1987) Contribución de la Exploración Petrolífera al Conocimiento de la Geología d'España. Instituto Geológico y Minero de España, Madrid (Spain).
    [Google Scholar]
  62. Larson, E. & Evanoff, E. (1998) Tephrostratigraphy and source of the tuffs of the White River sequence. GSA Spec. Papers, 325, 1.
    [Google Scholar]
  63. Leonard, E., Hubbard, M., Kelley, S., Evanoff, E., Siddoway, C., Oviatt, C., Heizler, M. & Timmons, M. (2002) High Plains to Rio Grande Rift: Late Cenozoic Evolution of Central Colorado. Field Guides, 3, 59.
    [Google Scholar]
  64. Makris, J., Demnati, A. & Klussmann, J. (1985) Deep seismic soundings in Morocco and a crust and upper mantle model deduced from seismic and gravity data. Annales de Géophysique, 3(3), 369–380.
    [Google Scholar]
  65. de Martonne, E. (1924) Les formes glaciaires sur le versant nord du Haut Atlas. Annales de Géographie, 33(183), 296–302.
    [Google Scholar]
  66. Mazurek, M., Hurford, A.J. & Leu, W. (2006) Unravelling the multi‐stage burial history of the Swiss Molasse Basin: integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Res., 18(1), 27–50.
    [Google Scholar]
  67. McIntosh, W. & Chapin, C. (2004) Geochronology of the central Colorado volcanic field. Tectonics, geochronology, and volcanism in the Southern Rocky Mountains and Rio Grande rift: New Mexico Bureau of Geology and Mineral Resources Bulletin, 160, 205–238.
    [Google Scholar]
  68. McMillan, M., Angevine, C. & Heller, P. (2002) Postdepositional tilt of the Miocene‐Pliocene Ogallala Group on the western Great Plains: Evidence of late Cenozoic uplift of the Rocky Mountains. Geology, 30(1), 63.
    [Google Scholar]
  69. McMillan, M., Heller, P. & Wing, S. (2006) History and causes of post‐Laramide relief in the Rocky Mountain orogenic plateau. GSA Bull., 118(3–4), 393.
    [Google Scholar]
  70. Milliman, J.D. & Syvitski, P.M. (1992) Geomorphic/tectonic control of sediment transport to the ocean: the importance of small mountainous rivers. J. Geol., 100, 525–544.
    [Google Scholar]
  71. Missenard, Y., Zeyen, H., Frizon de Lamotte, D., Leturmy, P., Petit, C., Sébrier, M. & Saddiqi, O. (2006) Crustal versus asthenospheric origin of relief of the Atlas Mountains of Morocco. J. Geophys. Res., 111(B03401), doi:10.1029/2005JB003708.
    [Google Scholar]
  72. Missenard, Y., Saddiqi, O., Barbarand, J., Leturmy, P., Ruiz, G., El Haimer, F.Z. & Frizon de Lamotte, D. (2008) Cenozoic denudation in the Marrakech High Atlas, Morocco: insight from apatite fission‐track thermochronology. Terra Nova, 20(3), 221–228.
    [Google Scholar]
  73. Molnar, P. & England, P. (1990) Late Cenozoic Uplift of Mountain Ranges and Global Climate Change‐Chicken or Egg? Nature,346(6279), 29–34.
    [Google Scholar]
  74. Montgomery, D. & Brandon, M. (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planetary Sci Lett, 201(3–4), 481–489.
    [Google Scholar]
  75. Muñoz, J.A. (1992) Evolution of a continental collision belt: ECORS Pyrenees crustal balanced cross section. In: Thrust Tectonics, (Ed. by K. McClay ), pp. 235–246. Chapman & Hall, London.
    [Google Scholar]
  76. Naeser, C., Izett, G. & Obradovich, J. (1980) Fission‐track and K‐Ar ages of natural glasses. US Geological Survey Bulletin,1489, 1–31.
    [Google Scholar]
  77. Naylor, M. & Sinclair, H. (2008) Pro‐vs. retro‐foreland basins. Basin Res., 20(3), 285–303.
    [Google Scholar]
  78. Ouimet, W.B., Whipple, K.X. & Granger, D.E. (2009) Beyond threshold hillslopes: Channel adjustment to base‐level fall in tectonically active mountain ranges. Geology, 37(7), 579–582.
    [Google Scholar]
  79. Patin, J. (1967) L'évolution morphologique du plateau de Lannemezan. Revue Géographique des Pyrénées et du Sud‐Ouest, 38(4), 325–337.
    [Google Scholar]
  80. Pazzaglia, F. & Brandon, M. (1996) Macrogeomorphic evolution of the post‐triassic appalachian mountains determined by deconvolution of the offshore basin sedimentary record. Basin Res., 8(3), 255–278.
    [Google Scholar]
  81. Pelletier, J. (2009) The impact of snowmelt on the late Cenozoic landscape of the southern Rocky Mountains, USA. GSA Today, 19(7), 5.
    [Google Scholar]
  82. Pinet, P. & Souriau, M. (1988) Continental erosion and large‐scale relief. Tectonics, 7(3), 563–582.
    [Google Scholar]
  83. Puigdefàbregas, C., Muñoz, J. & Vergés, J. (1992) Thrusting and foreland basin evolution in the southern Pyrenees. In: Thrust Tectonics (Ed. by K. McClay ), pp. 247–254. Chapman & Hall, London.
    [Google Scholar]
  84. Raynolds, R. (2002) Upper Cretaceous and Tertiary stratigraphy of the Denver basin, Colorado. Rocky Mountain Geol., 37(2), 111.
    [Google Scholar]
  85. ReevesJr, C. (1984) Ogallala depositional mystery. In Proceedings of the Ogallala Aquifer Symposium II, Lubbock, Texas June 1984. 129–156.15 fig. 42 ref.
    [Google Scholar]
  86. Riba, O., Reguant, S. & Villena, J. (1983) Ensayo de sńntesis estratigráfica y evolutiva de la cuenca terciaria del Ebro. In: Libro Jubilar J.M. Ríos, Geología de España (Ed. by J. Comba .), pp. 131–159. Instituto Geológico y Minero de España, Madrid (Spain).
    [Google Scholar]
  87. Ricci Luchi, F. (1986) The Oligocene to Recent foreland basins of the northern Apennines. In: Foreland Basins, (Eds. by P.A. Allen & P. Homewood ), pp. 105–139. International Association of Sedimentologists, Oxford. vol. 8 of Special publication.
    [Google Scholar]
  88. Sato, Y. & Denson, N. (1967) Volcanism and tectonism as reflected by the distribution of nonopaque heavy minerals in some Tertiary rocks of Wyoming and adjacent states. US GS Prof. Pap., 575C, C42–C54.
    [Google Scholar]
  89. Schlunegger, F. & Mosar, J. (2011) The last erosional stage of the Molasse Basin and the Alps. Inte. J. Earth Sci., 100, 1147–1162.DOI: 10.1007/s00531‐010‐0607‐1.
    [Google Scholar]
  90. Schmid, S.M., Fügenschuh, B., Kissling, E. & Schuster, R. (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97, 93–117.DOI: 10.1007/s00015‐004‐1113‐x.
    [Google Scholar]
  91. Seber, D., Barazangi, M., Tadili, B., Ramdani, M., Ibenbrahim, A. & Ben Sari, D. (1996) Three‐dimensional upper mantle structure beneath the intraplate Atlas and interplate Rif mountains of Morocco. J. Geophys. Res., 101(B2), 3125–3138.
    [Google Scholar]
  92. Serpelloni, E., Anzidei, M., Baldi, P., Casula, G. & Galvani, A. (2005) Crustal velocity and strain‐rate fields in Italy and surrounding regions: new results from the analysis of permanent and non‐permanent GPS networks. Geophys. J. Int., 161(3), 861–880.
    [Google Scholar]
  93. Sinclair, H.D., Gibson, M., Naylor, M. & Morris, R.G. (2005) Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. Am. J. Sci, 305(5), 369–406.
    [Google Scholar]
  94. Snyder, N., Whipple, K., Tucker, G. & Merritts, D. (2003) Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem. J. Geophys. Res., 108(B2), 2117.
    [Google Scholar]
  95. Sobel, E., Oskin, M., Burbank, D. & Mikolaichuk, A. (2006) Exhumation of basementcored uplifts: example of the Kyrgyz Range quantified with apatite fission track thermochronology. Tectonics, 25, TC2008, doi:10.1029/2005TC001809.
    [Google Scholar]
  96. Stock, G.M., Frankel, K.L., Ehlers, T.A., Schaller, M., Briggs, S.M. & Finkel, R.C. (2009) Spatial and temporal variations in denudation of the Wasatch Mountains, Utah, USA. Lithosphere, 1(1), 34–40.
    [Google Scholar]
  97. Sue, C., Delacou, B., Champagnac, J.D., Allanic, C., Tricart, P. & Burkhard, M. (2007) Extensional neotectonics around the bend of the Western/Central Alps: an overview. Int. J. Earth Sci., 96, 1101–1129.DOI: 10.1007/s00531‐007‐0181‐3.
    [Google Scholar]
  98. Summerfield, M. & Hulton, N. (1994) Natural controls of fluvial denudation rates in major world drainage basins. J. Geophys. Res., 99(B7), 13871–13883.
    [Google Scholar]
  99. Swinehart, J.S, Souders, V.L., Degraw, H.M & Diffendal, R.F. (1985) Cenozoic paleogeography of western Nebraska.In: Cenozoic Paleogeography of west‐central United States (Ed. by R.M.Flores & J.S.Kaplan ), pp.209–229Society of Economic Paleontologists and Mineralogists, Tulsa.
    [Google Scholar]
  100. Syvitski, J., Peckham, S., Hilberman, R. & Mulder, T. (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment. Geol., 162(1–2), 5–24.
    [Google Scholar]
  101. Teixell, A., Arboleya, M.‐L., Julivert, M. & Charroud, M. (2003) Tectonic shortening and topography in the central High Atlas (Morocco). Tectonics, 22(5), 1051.
    [Google Scholar]
  102. Teixell, A., Ayarza, P., Zeyen, H., Fernádez, M. & Arboleya, M.‐L. (2005) Effects of mantle upwelling in a compressional setting: the Atlas Mountains of Morocco. Terra Nova, 17(5), 456–461.
    [Google Scholar]
  103. Tucker, G. (2004) Drainage basin sensitivity to tectonic and climatic forcing: Implications of a stochastic model for the role of entrainment and erosion thresholds. Earth Surf. Proc. Land., 29(2), 185–205.
    [Google Scholar]
  104. Tucker, G.E. & Bras, R.L. (1998) Hillslope processes, drainage density, and landscape morphology. Water Resour. Res., 36, 1953–1964.
    [Google Scholar]
  105. Tucker, G.E. & Hancock, G.R. (2010) Modelling landscape evolution. Earth Surf. Proc. Land., 46, 28–50.
    [Google Scholar]
  106. Tucker, G.E. & Slingerland, R.L. (1996) Predicting sediment flux from fold and thrust belts. Basin Res., 8, 329–349.
    [Google Scholar]
  107. Tucker, G.E., Lancaster, S.T., Gasparini, N.M. & Bras, R.L. (2001) The Channel‐Hillslope Integrated Landscape Development Model (CHILD). In: Landscape Erosion and Evolution Modeling (Ed. by R.S. Harmon & W.W. Doe .), pp. 349–388. Kluwer Press, Dordrecht.
    [Google Scholar]
  108. Tucker, G., McCoy, S., Whittaker, A., Roberts, G., Lancaster, S. & Phillips, R. (2011) Geomorphic significance of postglacial bedrock scarps on normal‐fault footwalls. J. Geophys. Res., 116(F1), F01022.
    [Google Scholar]
  109. Turcotte, D. & Schubert, G. (2002) Geodynamics. Cambridge University Press, Cambridge.
    [Google Scholar]
  110. Vergés, J., Fernández, M. & Martníez, A. (2002) The Pyrenean orogen: pre‐, syn‐, and post‐collisional evolution. J. Virtual Explorer , 8, 57–76.
    [Google Scholar]
  111. Walder, J. & Hallet, B. (1985) A theoretical model of the fracture of rock during freezing. GSA Bull., 96(3), 336.
    [Google Scholar]
  112. Watts, A. (2001) Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge.
    [Google Scholar]
  113. Willett, S.D. & Schlunegger, F. (2010) The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative‐alpha basin. Basin Res., 22(5), 623–639.
    [Google Scholar]
  114. Willett, S.D., Schlunegger, F. & Picotti, V. (2006) Messinian climate change and erosional destruction of the central European Alps. Geology, 34(8), 613–616.
    [Google Scholar]
  115. Wittmann, H., von Blanckenburg, F., Kruesmann, T., Norton, K.P. & Kubik, P.W. (2007) Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland. J. Geophys. Res., 112(F04010), doi:10.1029/2006JF000929.
    [Google Scholar]
  116. Wobus, C., Tucker, G. & Anderson, R. (2010) Does climate change create distinctive patterns of landscape incision? J. Geophys. Res. , 115(F4), F04008.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00559.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00559.x
Loading

Data & Media loading...

Supplements

Data S1. Supporting information.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error