Volume 10 Number 4
  • E-ISSN: 1365-2478



The exact expressions for the reflection and refraction of homogeneous spherical compressional waves at the plane contact between two semi‐infinite media are obtained by a new simple method. Whilst its general ideas were outlined in a previous paper (Bortfeld 1962) dealing with some special interfaces, this method is now applied to all kinds of contact (solid‐solid, solid‐fluid, fluid‐solid, solid‐free, fluid‐fluid, fluid‐free). By some improvements, the treatment of the general case is even more simple than the previous one of the special cases.

Integrating the potentials for sinusoidal excitation over the circular frequency and adding the static potentials yields expressions for the step‐response which consist of (infinite) single integrals of elementary functions. By a single application of Cauchy's theorem, the complete set of wavefronts is obtained and the step‐response is put into forms suitable as a basis for numerical calculations. The responses for arbitrary source excitations are given in the usual way by superposition integrals.


Article metrics loading...

Loading full text...

Full text loading...


  1. Bortfeld, R., 1962, Exact Solution of the Reflection and Refraction of Arbitrary Spherical Compressional Waves at Liquid‐Liquid Interfaces and at Solid‐Solid Interfaces with Equal Shear Velocities and Equal Densities, Geophysical Prospecting, vol. X, p. 35–67.
    [Google Scholar]
  2. Cagniard, L., 1939, Réflexion et réfraction des ondes seismiques progressives, Paris.
  3. Ewing, M., Jardetzky, W., and Press, F., 1957, Elastic Waves in Layered Media, New York‐Toronto‐London .
  4. Lamb, H., 1904, On the Propagation of Tremors over the Surface of an Elastic Solid, Phil. Trans. Roy. Soc. (London) A, vol. 203, p. 1–42.
    [Google Scholar]
  5. Lipschitz, R. O. S., 1859, Über ein Integral der Differentialgleichung ∂+ (1/x) ∂+I= o, Journal für Math. Bd.LVI, p. 189–196.
    [Google Scholar]
  6. Love, A. E. H., 1934, The Mathematical Theory of Elasticity, 4th Ed., Cambridge .
  7. Rayleigh, Lord, 1885, On Waves Propagated Along the Plane Surface of an Elastic Solid, Proc. London Math. Soc., vol. 17, p. 4–11.
    [Google Scholar]
  8. Sauter, F., 1950, Der elastische Halbraum bei einer mechanischen Beeinflussung seiner Oberfläche (zweidimensionales Problem), Z. angew. Math. u. Mech., vol. 30, p. 203–215.
    [Google Scholar]
  9. Scholte, J. G., 1947, The Range of Existence of Rayleigh and Stoneley Waves, Monthly Notices Roy. Astron. Soc. Geophys. Suppl., vol. 5, p. 120–126.
    [Google Scholar]
  10. Sezawa, K., and Kanai, K., 1939, The Range of Possible Existence of Stoneley Waves and Some Related Problems, Bull. Earthquake Research Inst. (Tokyo), vol. 17, p. 1–8.
    [Google Scholar]
  11. Sommerfeld, A., 1909, Über die Ausbreitung der Wellen in der drahtlosen Telegraphie, Ann. Physik, vol. 28, p. 665–736.
    [Google Scholar]
  12. Stoneley, R., 1924, Elastic Waves at the Surface of Separation of Two Solids, Proc. Roy. Soc. (London), A, vol. 106, p. 416–428.
    [Google Scholar]
  13. Watson, G. N., 1922, A Treatise on the Theory of Bessel Functions, Cambridge.
  14. Weber, H., 1873, Über die Besselschen Functionen und ihre Anwendung auf die Theorie der elektrischen Ströme, Journal für Math., Bd. LXXV, p. 75–105.
    [Google Scholar]
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error