1887
Volume 30 Number 6
  • E-ISSN: 1365-2478

Abstract

A

Seismic dynamic deconvolution is the mathematical basis on which a degree of unification in different prospecting methods is possible, relative to the parameter identification in horizontally stratified media. There is a basic structure which has some immediate applications to the inversion of resistivity data and possibly to other problems. For resistivity soundings there exists a key equation which is parallel to the energy conservation law in the theory of synthetic seismograms.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1982.tb01342.x
2006-04-27
2024-04-24
Loading full text...

Full text loading...

References

  1. Baranov, V. and Kunetz, G.1958, Distribution du potentiel dans un milieu stratifié, Compte Rendu de l'Académic des Sciences247, 2170–2171.
    [Google Scholar]
  2. Bardan, V.1977, Comments on “Dynamic predictive deconvolution”, Geophysical Prospecting25, 569–572.
    [Google Scholar]
  3. Geronimus, Ya. L.1960, Polynomials Orthogonal on a Circle and Interval, Pergamon Press, Oxford , London , New York , Paris .
    [Google Scholar]
  4. Hémon, Ch.1966, Filtrages inverses dans le cas de l'incidence normale, in Le Filtrage en Sismique, Editions Technip, Paris .
    [Google Scholar]
  5. Koefoed, O.1976, Progress in the direct interpretation of resistivity soundings: An algorithm, Geophysical Prospecting24, 233–240.
    [Google Scholar]
  6. Koehler, F. and Taner, T.1977, Direct and inverse problems relating reflection coefficients and reflection response for horizontally layered media, Geophysics42, 1199–1206.
    [Google Scholar]
  7. Robinson, E. A. and Treitel, S.1977, The spectral function of a layered system and the determination of the waveforms at depth, Geophysical Prospecting25, 434–459.
    [Google Scholar]
  8. Robinson, E. A. and Treitel, S.1978, The fine structure of the normal incidence synthetic seismogram, Geophysical Journal of the Royal Astronomical Society53, 289–310.
    [Google Scholar]
  9. Santini, R. and Zambrano, R.1981, A numerical method of calculating the kernel function from Schlumberger apparent resistivity data, Geophysical Prospecting29, 108–127.
    [Google Scholar]
  10. Slighter, L. B.1933, The interpretation of the resistivity prospecting method for horizontal structures, Physics4, 307–322.
    [Google Scholar]
  11. Stefanesco, S. S. (in collaboration with C. and M. Schlumberger) 1932, Etudes théoriques sur la prospection électrique du sous‐sol. II, Studii Technice si Economice 14/2, Institutul Geologic al Românei, Bucuresti .
    [Google Scholar]
  12. Szaraniec, E.1963, A new expression and some of the properties of the kernel function in the Stefanesco integral (in Russian), Acta Geophysica Polonica11, 133–141.
    [Google Scholar]
  13. Szaraniec, E.1976, Fundamental functions for horizontally stratified earth, Geophysical Prospecting24, 528–548.
    [Google Scholar]
  14. Szaraniec, E.1979, Towards unification of geophysical problems for horizontally stratified media, Geophysical Prospecting27, 576–583.
    [Google Scholar]
  15. Szaraniec, E.1980, Aggregation and reorganization of large scale cascade systems subject to distant sounding, Acta Geophysica Polonica28, 175–184.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1982.tb01342.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error