1887
Volume 32 Number 2
  • E-ISSN: 1365-2478

Abstract

A

Geophysical inversion involves the estimation of the parameters of a postulated earth model from a set of observations. Since the associated model responses can be nonlinear functions of the model parameters, nonlinear least‐squares techniques prove to be useful for performing the inversion. A common type of inversion applies iterative damped linear least squares through use of the Marquardt‐Levenberg method. Traditionally, this method has been implemented by solving the associated normal equations in conventional ways. However, Singular Value Decomposition (SVD) produces significant improvements in computational precision when applied to the same system of normal equations. Iterative least‐squares modeling finds application in a wide variety of geophysical problems. Two examples illustrate the approach: (1) seismic wavelet deconvolution, and (2) the location of a buried wedge from surface gravity data. More generally, nonlinear least‐squares inversion can be used to estimate earth models for any set of geophysical observations for which an appropriate mathematical description is available.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1984.tb00726.x
2006-04-27
2020-04-02
Loading full text...

Full text loading...

References

  1. Aki, K. and Richards, P.1980, Quantitative Seismology—Theory and Methods, Vol. 2, W. H. Freeman Co., San Francisco .
    [Google Scholar]
  2. Backus, G. E. and Gilbert, J. F.1967, Numerical application of a formalism for geophysical, Journal of the Royal Astronomical Society, 13, 247–276.
    [Google Scholar]
  3. Backus, G. E. and Gilbert, J. F.1968, The resolving power of gross earth data, Geophysical Journal of the Royal Astronomical Society16, 169–205.
    [Google Scholar]
  4. Bamberger, A., Chavent, G., Hemon, C. and Lailly, P.1982, Inversion of normal incidence seismograms Geophysics47, 757–770.
    [Google Scholar]
  5. Bilgeri, D. and Carlini, A.1981, Non-linear estimation of reflection coefficients from seismic data Geophysical Prospecting29, 672–686.
    [Google Scholar]
  6. Cooke, D. A. and Schneider, W. A.1983, Generalized inversion of reflection seismic data, Geophysics48, 665–676.
    [Google Scholar]
  7. Crosson, R. W.1976, Crustal structure modeling of earthquake data, 1. Simultaneous least squares estimation of hypocenter and velocity parameters, Journal of Geophysical Research81, 3036–3046.
    [Google Scholar]
  8. Dennis, J.1977, Nonlinear least squares and equations, in The State of the Art of Numerical Analysis, D.Jacobs , Academic Press, London .
    [Google Scholar]
  9. Dobrin, M.1976, Introduction to Geophysical Prospecting, 3rd edn., McGraw‐Hill, New York .
    [Google Scholar]
  10. Draper, N. R. and Smith, H.1981, Applied Regression Analysis, 2nd edn., Wiley, New York .
    [Google Scholar]
  11. Fletcher, R.1980, Practical Methods of Optimization, Vol. 1, Wiley Interscience, New York .
    [Google Scholar]
  12. Gjoystdal, H. and Ursin, B.1981, Inversion of reflection times in three dimensions, Geophysics46, 972–983.
    [Google Scholar]
  13. Golub, G. H. and Reinsch, C.1970, Singular Value Decomposition and Least Squares Solutions: Handbook for Automatic Computation, II, Linear Algebra, eds. J.Wilkinson and C.Reinsch , Springer‐Verlag, Berlin , Heidelberg , New York .
    [Google Scholar]
  14. Goupillaud, P. L.1961, An approach to inverse filtering of near surface layer effects from seismic records, Geophysics26, 654–760.
    [Google Scholar]
  15. Graybill, F. A.1969, Introduction to Matrices with Applications in Statistics, Wadsworth Publishing Co. Inc., Belmont .
    [Google Scholar]
  16. Inman, J. R.1975, Resistivity inversion with ridge regression, Geophysics40, 798–817.
    [Google Scholar]
  17. Jackson, D. D.1972, Interpretation of inaccurate, insufficient and inconsistent data, Geophysical Journal of the Royal Astronomical Society28, 97–109.
    [Google Scholar]
  18. Jackson, D. D.1979, The use of a priori data to resolve non‐uniqueness in linear inversion, Geophysical Journal of the Royal Astronomical Society57, 137–157.
    [Google Scholar]
  19. Jupp, D. L. B. and Vozoff, K.1975, Stable iterative methods for the inversion of geophysical data, Geophysical Journal of the Royal Astronomical Society42, 957–976.
    [Google Scholar]
  20. Kunetz, G. and D'Erceville, I.1962, Sur certaines propriétés d'une onde plane de compression dans un milieu stratifié, Annales de Geophysique, 19, 351–359.
    [Google Scholar]
  21. Lanczos, C.1961, Linear Differential Operators, Van Nostrand, Princeton . 665–679.
    [Google Scholar]
  22. Lailly, P.1981, The inverse problem in 1‐D reflection seismics, in The Solution of the Inverse Problem in Geophysical Interpretation, R.Cassinis , Plenum Press, New York .
    [Google Scholar]
  23. Lawson, C. L. and Hanson, R. J.1974, Solving Least Squares Problems, Prentice‐Hall, Engle‐wood Cliffs , New Jersey .
    [Google Scholar]
  24. Levenberg, K.1944, A method for the solution of certain nonlinear Problems in least squares, Quarterly of Applied Mathematics2, 164–168.
    [Google Scholar]
  25. Lines, L. R. and Ulrych, T. J.1977, The old and the new in seismic deconvolution and wavelet estimation, Geophysical Prospecting25, 512–540.
    [Google Scholar]
  26. Marquardt, D. W.1963, An algorithm for least squares estimation of non-linear parameters Journal of the Society of Industrial and Applied Mathematics11, 431–441.
    [Google Scholar]
  27. Neumann, G.1981, Determination of lateral inhomogeneities in reflection seismics by inversion of traveltime residuals, Geophysical Prospecting29, 161–177.
    [Google Scholar]
  28. Oldenburg, D. W.1974, The inversion and interpretation of gravity anomalies, Geophysics39, 526–536.
    [Google Scholar]
  29. Oristaglio, M. L. and Worthington, M. H.1980, Inversion of surface and borehole electromagnetic data for two dimensional electrical conductivity models, Geophysical Prospecting28, 633–657.
    [Google Scholar]
  30. Parker, R. L.1974, Best bounds on density and depth from gravity data, Geophysics39, 644–649.
    [Google Scholar]
  31. Robinson, E. A.1967, Multichannel Time Series Analysis with Digital Computer Programs, Holden Day, San Francisco .
    [Google Scholar]
  32. Robinson, E. A. and Treitel, S.1980, Geophysical Signal Analysis, Prentice‐Hall, Englewood Cliffs , New Jersey .
    [Google Scholar]
  33. Smith, F. B. and Shanno, D. F.1971, An improved Marquardt procedure for nonlinear regressions, Technometrics13, 63–75.
    [Google Scholar]
  34. Stewart, G. W.1973, Introduction to Matrix Computations, Academic Press, New York , London .
    [Google Scholar]
  35. Strang, G.1980, Linear Algebra and its Applications, 2nd edn., Academic Press, New York , London .
    [Google Scholar]
  36. Treitel, S., Gutowski, P. R. and Wagner, D. E.1982, Plane wave decomposition of seismograms, Geophysics47, 1375–1401.
    [Google Scholar]
  37. Treitel, S. and Lines, L. R.1982, Linear inverse theory and deconvolution, Geophysics47, 1153–1159.
    [Google Scholar]
  38. Treitel, S. and Robinson, E. A.1966, The design of high resolution digital rilters, IEEE Transactions on Geoscience Electronics GE‐4, 25–38.
  39. Twomey, S.1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements, Elsevier, Amsterdam .
    [Google Scholar]
  40. Vigneresse, J. L.1977, Linear inverse problem in gravity profile interpretations, Journal of Geophysics43, 193–213.
    [Google Scholar]
  41. Wiggins, R. A.1972, The generalized linear inverse problem: Implication of surface waves and free oscillations for earth structure, Reviews of Geophysics and Space Physics10, 251–285.
    [Google Scholar]
  42. Wiggins, R. A., Larner, K. L. and Wisecup, R. P.1976, Residual static analysis as a general linear inverse problem, Geophysics41, 922–938.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1984.tb00726.x
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error