1887
Volume 35 Number 9
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In mapping the topography of the basement of deep sedimentary basins by gravity modelling, the accuracy can be improved by incorporating an exponential increase in density with depth. For calculating the gravity effect of a three‐dimensional (3D) structure with such an exponential density‐depth relation a frequency‐domain forward algorithm based on series expansion is presented, the numerical evaluation of which can be performed efficiently by fast Fourier transform. The algorithm can be applied in a recursive procedure to give the inverse solution in terms of basement relief.

The inversion procedure is satisfactorily tested on a 2D synthetic example and a 3D field example of gravity data from the western margin of the Pannonian Basin in eastern Austria, where up to 2.2 km of Tertiary sediments overlie an igneous or metamorphic basement. The results are confirmed by basement intersections in several wells.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1987.tb00858.x
2006-04-27
2020-04-01
Loading full text...

Full text loading...

References

  1. Agarwal, B.N.P.1971. Direct gravity interpretation of sedimentary basin using a digital computer–part I, Pure and Applied Geophysics86, 5–12.
    [Google Scholar]
  2. Athy, L.F.1930. Density, porosity, and compaction of sedimentary rocks, Bulletin of the American Association of Petroleum Geologists14, 1–24.
    [Google Scholar]
  3. Baranov, V.1975. Potential Fields and Their Transformation in Applied Geophysics, Gebrüder Bornträger.
    [Google Scholar]
  4. Bott, M.H.P.1960. The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins, Geophysical Journal of the Royal Astronomical Society3, 63–67.
    [Google Scholar]
  5. Browne, S.E.1984. Gravity studies in Sudan: a tectonic interpretation for some rifted sedimentary basins, PhD thesis, University of Leeds.
  6. Cordell, L.1973. Gravity analysis using an exponential density‐depth function–San Jacinto Graben, California, Geophysics38, 684–690.
    [Google Scholar]
  7. Gerstbach, G.1985. Tiefenbestimmung der Laxenburger und Schwechater Senke aus Lot‐störungen, Berichte über den Tiefbau der Ostalpen12, 75–82.
    [Google Scholar]
  8. Granser, H.1983. Comments on “Potential field continuation between general surfaces” by F.J.R. Syberg, Geophysical Prospecting31, 992–994.
    [Google Scholar]
  9. Granser, H.1986. Convergence of iterative gravity inversion, Geophysics51, 1146–1147.
    [Google Scholar]
  10. Granser, H.1987. Nonlinear inversion of gravity data using the Schmidt‐Lichtenstein approach, Geophysics52, 88–93.
    [Google Scholar]
  11. Grill, R. and Janoschek, W.1980. Erdöl und Erdgas, in Der Geologische Aufbau Österreichs , R.Oberhauser (ed.), 556–573, Springer‐Verlag Inc.
    [Google Scholar]
  12. Hedberg, H.1936. The gravitational compaction of clays and shales, American Journal of Science31, 241–287.
    [Google Scholar]
  13. Maxant, J.1980. Variation of density with rocktype, depth, and formation in the Western Canada Basin from density logs, Geophysics45, 1061–1076.
    [Google Scholar]
  14. Murthy, I.V.R. and Rao, D.B.1979. Gravity anomalies of two‐dimensional bodies of irregular cross‐section with density contrast varying with depth, Geophysics44, 1525–1530.
    [Google Scholar]
  15. Oldenburg, D.W.1974. The inversion and interpretation of gravity anomalies, Geophysics39, 526–536.
    [Google Scholar]
  16. Parker, R.L.1973. The rapid calculation of potential anomalies, Geophysical Journal of the Royal Astronomical Society31, 447–455.
    [Google Scholar]
  17. Rao, D.B.1986. Modelling of sedimentary basins from gravity anomalies with variable density contrast, Geophysical Journal of the Royal Astronomical Society84, 207–212.
    [Google Scholar]
  18. Senftl, E.1970. Geophysikalische Auswertung von Schweremessungen im Gebiet des Neusiedler Sees und des Seewinkels, 4. Fachtagung für Vermessungswesen in Wien, Publikation des Bundesamts für Eich und Vermessungswesen, Wien47–55.
  19. Steinhauser, P., Ruess, D., Zych, D., Haitzmann, H. and Walach, G.1983. The Geoid in Austria: digital models of mean topographic heights and rock densities, Proceedings of the International Association of Geodesists' Symposium1, 322–338.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1987.tb00858.x
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error