1887
Volume 35 Number 7
  • E-ISSN: 1365-2478

Abstract

A

The Kunetz‐Claerbout equation for the acoustic transmission problem in a layered medium in its original form establishes the relation between the transmission and the reflec tion response for P‐waves in an horizontally layered medium and with vertical incidence. It states that the reflection seismogram due to an impulsive source at the surface, is one side of the autocorrelation of the seismogram due to an impulsive source at depth and a surface receiver.

By adapting Claerbout's formulation to the transmission of SH‐waves, the Kunetz‐Claerbout equation also holds for reflection and transmission coefficients dependent on the incident angle. Thus, earthquake geometry SH‐transmission seismograms can be used to caculate corresponding pseudoreflection seismograms which, in turn, can be inverted for the impedance structure using the Levinson algorithm. If the average incidence angle is known, a geometrical correction on the resulting impedance model can improve the resolution of layer thicknesses.

In contrast to the inversion of reflection seismograms, the Levinson algorithm is shown to yield stable results for the inversion of transmission seismograms even in the presence of additive noise. This noise stabilization is inherent to the Kunetz‐Claerbout equation.

Results of inverted SH‐wave microearthquake seismograms from the Swabian Jura, SW Germany, seismic zone obtained at recording site Hausen im Tal have been compared with sonic‐log data from nearby exploration drilling at Trochtelfingen. The agreement of the main structural elements is fair to a depth of several hundred metres.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1987.tb02258.x
2006-04-27
2020-09-24
Loading full text...

Full text loading...

References

  1. Aki, K. and Richards, P.G.1980, Quantitative Seismology, W.H. Freeman & Co.
    [Google Scholar]
  2. Bamberger, A., Chavent, G., Hermon, C.H. and Lailly, P.1982, Inversion of normal incidence seismogram, Geophysics47, 757–770.
    [Google Scholar]
  3. Claerbout, J.F.1968, Synthesis of a layered medium from it's acoustic transmission response, Geophysics33, 264–269.
    [Google Scholar]
  4. ClaerboutJ.F.1976, Fundamentals of Geophysical Data Processing, McGraw‐Hill Book Co.
    [Google Scholar]
  5. Cybenko, G.1980, The numerical stability of the Levinson‐Durbin algorithm for Toeplitz systems of equations, Society of Industrial and Applied Mathematics Journal of Scientific and Statistical Computing1, 303–319.
    [Google Scholar]
  6. Ferber, R.G.1985, Stabilization of normal‐incidence seismogram inversion removing the noise‐induced bias, Geophysical Prospecting33, 212–223.
    [Google Scholar]
  7. Haskell, N.A.1960, Crustal reflection of plane SH waves, Journal of Geophysical Research65, 4147–4150.
    [Google Scholar]
  8. Kämpfe, C.1984, Tiefbohrungen in Baden‐Württemberg und umgebenden Ländern, Arbeiten des Instituts für Geologie und Paläontologie der Universität Stuttgart, Neue Folge80, 1–313.
    [Google Scholar]
  9. Kunetz, G. and D'Erceville, I.1962, Sur certaines propiétés d'une onde acoustique plane de compression dans une milieu stratifié, Annales de Geophysique18, 351–359.
    [Google Scholar]
  10. Langer, H.1986, Seismotektonische Herdparameter und Ausbreitungseffekte bei Mikroerdbeben im Bereich der westlichen Schwäbischen Alb, Berichte des Institutes für Geophysik der Universität Stuttgart, No.2, 1–113.
  11. Mendel, J.M.1981, A time domain approach to the normal‐incidence inverse problem, Geophysical Prospecting29, 742–757.
    [Google Scholar]
  12. Mendel, J.M. and Habibi‐Ashrafi, F.1980, A survey of approaches to solving problems for lossless layered media systems, IEEE Transactions on Geoscience and Remote SensingGE‐18 (4), 320–330.
    [Google Scholar]
  13. Papoulis, A.1965, Probability, Random Variables and Stochastic Processes, McGraw‐Hill Book Co.
    [Google Scholar]
  14. Sheriff, R.E. and Geldart, L.P.1983, Exploration Seismology, Vol.2, Data‐processing and Interpretation, Cambridge University Press, Cambridge .
    [Google Scholar]
  15. Scherbaum, F.1986, Die seismische Erkundung des Stationsuntergrundes mit Nahbebenseis‐ mogrammen, Berichte des Institutes für Geophysik der Universität Stuttgart, No.1, 1–209.
  16. Scherbaum, F. and Stoll, D.1985, The estimation of Green's function from local earthquake recordings and the modelling of the site response, Physics of the Earth and Planetary Interior38, 189–292.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1987.tb02258.x
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error