1887
Volume 40 Number 1
  • E-ISSN: 1365-2478

Abstract

In the Asse salt‐mine (Germany), where extensive research is carried out on various aspects of nuclear waste disposal in rock‐salt formations, the resistivity of a future construction site for a test seal at a depth of 945 m has been investigated. Measurements have been conducted, using various types of the four‐point electrode configuration, on a network of 180 electrodes permanently installed in boreholes. A fully computer‐controlled measurement system has been built consisting of a resistivity meter, a switchbox for electrodes and a computer with special control software. The system has interactive and programmable automatic working modes with an extensive capability for documentation and processing including the immediate evaluation of apparent resistivities and is suitable for long‐term continuous observations.

The average resistivity at the site which consists of almost homogeneous Stassfurt rock‐salt, is approximately 0.6 × 106Ωm with little variation. There is a small anomaly due to a conductive inclusion, probably a local anhydrite band. There is no indication of anisotropy so far and no significant change with time. The specific amount of water in the effective pores and its change can be estimated from the observed resistivities using the extended form of Archie's equation with pore saturation included. In this case data for the specific internal surface from samples are available and the order of permeability may be estimated using the formation factor derived from resistivities.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1992.tb00365.x
2006-04-27
2024-04-18
Loading full text...

Full text loading...

References

  1. Archie, G.E.1942. Electrical resistivity as an aid in core analysis interpretation. Transactions of the American Institute of Mining Engineers, 146.
    [Google Scholar]
  2. Borns, D.J. and Stormont, J.C.1988. An interim report on excavation effect studies at the Waste Isolation Pilot Plant: the delineation of the disturbed rock zone. National Technical Information Service, US Department of Commerce, Springfield, VA 22161.
  3. BRGM Instruments.
    BRGM Instruments.1988. Syscal‐R2 operating manual (revised 3.1). Serial Nr. 77, B.P. 6009, 45060 Orléans Cedex 2, France.
  4. Carman, P.C.1956. Flow of Gases through Porous Media. Butterworth Scientific Publications, London
    [Google Scholar]
  5. Daniels, J.J.1977. Three‐dimensional resistivity and induced polarization modelling using buried electrodes. Geophysics42, 1002–1019.
    [Google Scholar]
  6. Dey, A. and Morrison, H.F.1979. Resistivity modelling for arbitrarily shaped three‐dimensional structures. Geophysics, 44, 753–780.
    [Google Scholar]
  7. Engelmann, H.J., Boochs, P.W., Hänsel, W. and Peters, L.1989. Dams as sealing systems in rock salt formations. Test dam construction and determination of permeability. In: Sealing of Radioactive Waste Repositories, Proceedings of NEA/CEC Workshop, OECD, 151–163.
  8. Flach, D. and Yaramanci, U.1989. Geophysical investigations in a sealing construction and test site in rock salt: seismology, seismic tomography and geoelectrics. In: Sealing of Radioactive Waste Repositories, Proceedings of NEA/CEC Workshop, OECD, 163–172.
  9. Gevantman, L.H.
    (ed.). 1981. Physical Properties Data for Rock Salt. U.S. Government Printing Office, National Bureau of Standards Monograph 167, Washington .
    [Google Scholar]
  10. Gies, H., Herbert, H.‐J. and Jockwer, N.1990. Zur Bedeutung der Wassergehalte für die Lithostratigraphie in Steinsalzhorizonten des Zechsteins. Kali und Steinsalz10, Heft 7/8, 265–272.
    [Google Scholar]
  11. Jockwer, N.1981. Untersuchungen zur Art und Menge des im Steinsalz des Zechsteins enthaltenen Wassers sowie dessen Freisetzung und Migration im Temperaturfeld endgelagerter radioaktiver Abfälle. Gesellschaft für Strahlen‐und Umweltforschung mbH, München, Institut für Tieflagerung, Braunschweig, Bericht T‐119.
  12. Keller, G.V., Skokan, C.K., Andersen, H.T., Pfeifer, M.C., Keller, S.D. and Kim, K.D.1987. Final Report: Studies of electrical and electromagnetic methods for characterizing salt properties at the WIPP site, New Mexico. Contractor Report to Sandia National Laboratories (No. 04‐1295), Department of Geophysics, Colorado School of Mines.
  13. Kessels, W., Flentge, I. and Kolditz, H.1985. DC geoelectric sounding to determine water content on the salt mine Asse (FRG). Geophysical Prospecting33, 436–446.
    [Google Scholar]
  14. Kozeny, J.1927. Über die kapillare Leitung des Wassers im Boden. Sitzungsberichte der Akademie der Wissenschaften Wien, Mathematisch naturwissenschaftliche Klasse (Abt. IIa), 136a.
    [Google Scholar]
  15. Kühn, K.1989. Is sealing of a repository decisive for its long‐term safety? In: Sealing of Radioactive Waste Repositories, Proceedings of NEA/CEC Workshop, OECD , 23–33.
  16. Kunetz, G.1966. Principles of Direct Current Resistivity Prospecting. Geoexploration Monographs, Series 1, No. 1, Gebrüder Bornträger, Berlin – Nikolassee .
    [Google Scholar]
  17. Matula, R.A.1981. Electrical and magnetic properties of rock salt. US Government Printing Office, National Bureau of Standards Monograph 167, Washington , 242–282.
    [Google Scholar]
  18. Mehlhorn, H.1982. Der Einsatz der geoelektrischen Potentialmethoden zur Erkundung von Salzlösungsvorkommen im Kalibergbau. Zeitschrift der Geologischen Wissenschaften, Berlin10, Heft 1, 97–112.
    [Google Scholar]
  19. Militzer, H., Schön, J., Stözner, U. and Stoll, R.1972. Angewandte Geophysik im Ingenieur‐ und Bergbau. VEB Deutscher Verlag für Grundstoffenergie, Leipzig
    [Google Scholar]
  20. Schmidt, M.W., Walter, F., Novak, E.J., Prij, J. and Vons, L.H.1989. Seals as technical barriers in a repository in salt formations. In: Sealing of Radioactive Waste Repositories. Proceedings of NEA/CEC Workshop, OECD, 88–98.
  21. Schopper, J.R.1982. Electrical conductivity of rocks containing electrolytes. Landolt‐Börnstein, Group V, Physical Properties of Rocks, lb, 276–291. Springer Verlag, Inc.
    [Google Scholar]
  22. Schopper, J.R. and Riepe, S.1983. Abschlussbericht über die petrophysikalischen Untersuchungen an Salzproben im Jahre 1982/83. Institut für Geophysik, T.U. Clausthal.
    [Google Scholar]
  23. Skokan, C.K., Pfeifer, M.C., Keller, C.V. and Andersen, H.T.1989. Studies of electrical and electromagnetic methods for characterizing salt properties at the WIPP Site, New Mexico. National Technical Information Service, US Department of Commerce, Springfield, VA 22161.
  24. Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A.1976. Applied Geophysics. Cambridge University Press.
    [Google Scholar]
  25. Yaramanci, U. and Flach, D.1989a. Geoelectrical measurements at the salt mine Asse to observe an underground barrier construction. Lecture Notes in Earth Sciences . 27, Detection of Subsurface Flow Phenomena, 295–312. Springer‐Verlag, Inc.
    [Google Scholar]
  26. Yaramanci, U. and Flach, D.1989b. Entwicklung einer vollautomatischen Gleichstrom‐Geoelektrikanlage für den Einsatz im Vorhaben ‘Dammbau im Salzgebirgersquo;. Gesell‐schaft für Strahlen‐ und Umweltforschung mbH, München, Bericht 1/89.
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1992.tb00365.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error