1887
Volume 42 Number 2
  • E-ISSN: 1365-2478

Abstract

Abstract

A gravimetric survey, covering a site 200 m square, was carried out in order to locate karstic cavities. After eliminating the regional trend using a polynomial fit, the residual is modelled by least‐squares prediction. Correlated signals for several wavelengths are detected. The inversion of these anomalies is performed by a global 3D adjustment using spherical bodies as models. The adjustment is repeated in order to obtain a stable configuration. The results show the probable presence of a system of cavities and galleries. Data collected from boreholes and the subsequent appearance of sink‐holes are consistent with the results.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1994.tb00201.x
2006-04-27
2020-04-02
Loading full text...

Full text loading...

References

  1. BarzaghiR. and SansoF.1983. Sulla stima empirica della funzione di covarianza. Bolletino di Geodesia e Science Affine4, 389–415.
    [Google Scholar]
  2. BhattacharyyaB.K. and LeuL.‐K.1977. Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics42, 41–50.
    [Google Scholar]
  3. CamachoA.G. and VieiraR.1990. Predicción de la correción de marea en la Peninsula Ibérica. Fisica de la Tierra2, 11–48. Universidad Complutense de Madrid.
    [Google Scholar]
  4. CartwrightD.E. and TaylerR.J.1971. New computations of the tide generating potential. Geophysical Journal of the Royal Astronomical Society23, 45–74.
    [Google Scholar]
  5. CordellL. and HendersonR.G.1968. Iterative three‐dimensional solution of gravity anomaly data using a digital computer. Geophysics33, 596–601.
    [Google Scholar]
  6. FajklewiczZ.J.1976. Gravity vertical gradient measurements for the detection of small geologic and anthropogenic forms. Geophysics41, 1016–1030.
    [Google Scholar]
  7. HuestisS.P.1986. Uniform norm minimzation in three dimensions. Geophysics51, 1141–1145.
    [Google Scholar]
  8. MoritzH.1980. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe
    [Google Scholar]
  9. MurthyI.V.R. and RaoD.B.1979. Gravity anomalies of two‐dimensional bodies of irregular cross‐section with density contrast varying with depth. Geophysics44, 1525–1530.
    [Google Scholar]
  10. MussioL.1984. Il metodo della collocazione minimi quadrati e le sue applicazioni per l'analisi statistica dei risultati delle compensazioni. Ricerche di Geodesia, Topografia e Fotogrammetria CLUP Milano , 305–338.
  11. MussioL.1987. Estrategias del método de colocación. IV Curso de Geodesia Superior. Instituto de Astronomía y Geodesia (CSIC‐UCM), Madrid , 145–209.
    [Google Scholar]
  12. NeumannR.1967. La gravimetrie de haute precision, application aux recherches de cavites. Geophysical Prospecting15, 116–134.
    [Google Scholar]
  13. OldenburgD.W.1974. The inversion and interpretation of gravity anomalies. Geophysics39, 526–536.
    [Google Scholar]
  14. ParkerR.L.1974. Best bounds on density and depth from gravity data. Geophysics39, 644–649.
    [Google Scholar]
  15. PedersenL.B.1979. Constrained inversion of potential field data. Geophysical Prospecting27, 726–748.
    [Google Scholar]
  16. RichardsonR.M. and MacInnesS.C.1989. The inversion of gravity data into three‐dimensional polyhedral models. Journal of Geophysical Research94, 7555–7562.
    [Google Scholar]
  17. SybergF.J.R.1972. A Fourier method for the regional‐residual problem of potential fields. Geophysical Prospecting20, 47–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1994.tb00201.x
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error