1887
Volume 53 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Dip‐moveout (DMO) correction is often applied to common‐offset sections of seismic data using a homogeneous isotropic medium assumption, which results in a fast execution. Velocity‐residual DMO is developed to correct for the medium‐treatment limitation of the fast DMO. For reasonable‐sized velocity perturbations, the residual DMO operator is small, and thus is an efficient means of applying a conventional Kirchhoff approach. However, the shape of the residual DMO operator is complicated and may form caustics. We use the Fourier domain for the operator development part of the residual DMO, while performing the convolution with common‐offset data in the space–time domain. Since the application is based on an integral (Kirchhoff) method, this residual DMO preserves all the flexibility features of an integral DMO. An application to synthetic and real data demonstrates effectiveness of the velocity‐residual DMO in data processing and velocity analysis.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2005.00459.x
2004-12-23
2024-04-25
Loading full text...

Full text loading...

References

  1. AlkhalifahT.1996. Transformation to zero offset in transversely isotropic media. Geophysics61, 947–963.DOI: 10.1190/1.1444044
    [Google Scholar]
  2. AlkhalifahT.1997. Kinematics of 3‐D DMO operators in transversely isotropic media. Geophysics62, 1214–1219.DOI: 10.1190/1.1444222
    [Google Scholar]
  3. AlkhalifahT.1998. Acoustic approximations for processing in transversely isotropic media. Geophysics63, 623–631.DOI: 10.1190/1.1444361
    [Google Scholar]
  4. AlkhalifahT. and RamptonD.1997. Seismic anisotropy in Trinidad: Processing and interpretation. SEP-94, 299–325.
    [Google Scholar]
  5. AlkhalifahT. and TsvankinI.1995. Velocity analysis for transversely isotropic media. Geophysics60, 1550–1566.DOI: 10.1190/1.1443888
    [Google Scholar]
  6. AndersonJ. and TsvankinI.1997. Dip‐moveout processing by Fourier transform in anisotropic media. Geophysics62, 1260–1269.DOI: 10.1190/1.1444227
    [Google Scholar]
  7. ArtleyC. and HaleD.1994. Dip moveout processing for depth‐variable velocity. Geophysics59, 610–622.DOI: 10.1190/1.1443621
    [Google Scholar]
  8. BanikN.C.1984. Velocity anisotropy of shales and depth estimation in the North Sea basin. Geophysics49, 1411–1419.
    [Google Scholar]
  9. BleisteinN.1990. Börn DMO revisited. 60th SEG meeting, San Francisco , USA , Expanded Abstracts, 1366–1369.
  10. BolondiG., LoingerE. and RoccaF.1982. Offset continuation of seismic sections. Geophysical Prospecting30, 813–828.
    [Google Scholar]
  11. ChapmanC.H. and DrummondR.1982. Body‐wave seismograms in inhomogeneous media using Maslov asymptotic theory. Bulletin of the Seismological Society of America72, S277–S317.
    [Google Scholar]
  12. DeregowskiS.M.1986. What is DMO?First Break4, 7–24.
    [Google Scholar]
  13. GonzalezA., LynnW. and RobinsonW.1991. Prestack frequency–wavenumber (fk) migration in a transversely isotropic medium. 61st SEG meeting, Houston , USA , Expanded Abstracts, 1155–1157.
  14. HaleD.1984. Dip‐moveout by Fourier transform. Geophysics49, 741–757.DOI: 10.1190/1.1441702
    [Google Scholar]
  15. HaleD. and ArtleyC.1993. Squeezing dip moveout for depth‐variable velocity. Geophysics58, 257–264.DOI: 10.1190/1.1443410
    [Google Scholar]
  16. LinerC.L.1991. Börn theory of wave‐equation dip moveout. Geophysics56, 182–189.DOI: 10.1190/1.1443030
    [Google Scholar]
  17. NotforsC.D. and GodfreyR.J.1987. Dip moveout in the frequency–wavenumber domain (short note). Geophysics52, 1718–1721.DOI: 10.1190/1.1442289
    [Google Scholar]
  18. RothmanD.H., LevinS.A. and RoccaF.1985. Residual migration – Applications and limitations. Geophysics50, 110–126.DOI: 10.1190/1.1441822
    [Google Scholar]
  19. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.DOI: 10.1190/1.1442051
    [Google Scholar]
  20. TsvankinI.1996. P‐wave signatures and notation for transversely isotropic media: An overview. Geophysics61, 467–483.DOI: 10.1190/1.1443974
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2005.00459.x
Loading
/content/journals/10.1111/j.1365-2478.2005.00459.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error