1887
Volume 53, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Multi‐refractor imaging is a technique for constructing a single two‐dimensional image of a number of refractors by stacking multiple convolved and cross‐correlated reversed shot records. The method is most effective with high‐fold data that have been obtained with roll‐along acquisition programs because the stacking process significantly improves the signal‐to‐noise ratios. The major advantage of the multi‐refractor imaging method is that all the data can be stacked to maximize the signal‐to‐noise ratios before the measurement of any traveltimes. However, the signal‐to‐noise ratios can be further increased if only those traces that have arrivals from the same refractor are used, and if the correct reciprocal times or traces are employed.

A field case study shows that multi‐refractor imaging can produce a cross‐section similar to the familiar reflection cross‐section with substantially higher signal‐to‐noise ratios for the equivalent interfaces.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2005.00478.x
2005-04-14
2024-04-20
Loading full text...

Full text loading...

References

  1. AldridgeD.F. and OldenburgD.W.1992. Refractor imaging using an automated wavefront reconstruction method. Geophysics57, 378–385.DOI: 10.1190/1.1443252
    [Google Scholar]
  2. BarryK.M.1967. Delay time and its application to refraction profile interpretation. In: Seismic Refraction Prospecting (ed. A.W.Musgrave ), pp. 348–361. Society of Exploration Geophysicists, Tulsa , OK .
    [Google Scholar]
  3. BarthelmesA.J.1946. Application of continuous profiling to refraction shooting. Geophysics11, 24–42.
    [Google Scholar]
  4. ČervenýV., KlimešL. and PšenčíkI.1988. Complete seismic‐ray tracing in three‐dimensional structures. In: Seismological Algorithms (ed. D.J.Doornbos ), pp. 89–168. Academic Press, Inc.
    [Google Scholar]
  5. DobrinM.B.1976. Introduction to Geophysical Prospecting , 3rd edn. McGraw–Hill Book Co.
    [Google Scholar]
  6. EdgeA.G. and LabyT.H.1931. The Principles and Practice of Geophysical Prospecting . Cambridge University Press.
    [Google Scholar]
  7. De FrancoR., BerraF., CaielliG., BiellaG., BonioloG., CorsiA.et al.2004. Late Neogene‐Quaternary evolution of the intramontane Clusone basin (Southern Alps, Italy): integration of seismic and geological data. Journal of Quaternary Science19, 409–421.DOI: 10.1002/jqs.845
    [Google Scholar]
  8. GardnerL.W.1939. An areal plan for mapping subsurface structure by refraction shooting. Geophysics4, 247–259.DOI: 10.1190/1.1440501
    [Google Scholar]
  9. HagedoornJ.G.1959. The plus‐minus method of interpreting seismic refraction sections. Geophysical Prospecting7, 158–182.
    [Google Scholar]
  10. HagiwaraT. and OmoteS.1939. Land creep at Mt. Tyausa‐Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin17, 118–137.
    [Google Scholar]
  11. HalesF.W.1958. An accurate graphical method for interpreting seismic refraction lines. Geophysical Prospecting6, 285–294.
    [Google Scholar]
  12. HawkinsL.V.1961. The reciprocal method of routine shallow seismic refraction investigation. Geophysics26, 806–819.DOI: 10.1190/1.1438961DOI: 10.1029/98JB01981
    [Google Scholar]
  13. HeilandC.A.1963. Geophysical Exploration . Prentice–Hall, Inc.
    [Google Scholar]
  14. HillN.R.1987. Downward continuation of refracted arrivals to determine shallow structure. Geophysics52, 1188–1198.DOI: 10.1190/1.1442382
    [Google Scholar]
  15. LankstonR.B.1989. The seismic refraction method: a viable tool for mapping shallow targets into the 1990s. Geophysics54, 1535–1542.DOI: 10.1190/1.1442621
    [Google Scholar]
  16. MatsuokaT., TanerM.T., HayashiT., AshidaY., WatanabeT. and KusumiH.2000. Imaging of refracted waves by convolution. 70th SEG meeting, Calgary , Canada , Expanded Abstracts, 1187–1190.
  17. MilkereitB., MooneyW.D. and KolerW.M.1985. Inversion of seismic refraction data in planar dipping structure. Geophysical Journal of the Royal Astronomical Society82, 81–103.
    [Google Scholar]
  18. NettletonL.L.1940. Geophysical Prospecting for Oil . McGraw–Hill Book Co.
    [Google Scholar]
  19. OrlowskyD., RuterH. and DresenL.1998. Combination of common‐midpoint‐refraction seismic with the generalized reciprocal method. Journal of Applied Geophysics39, 221–235.DOI: 10.1016/S0926-9851(98)00013-5
    [Google Scholar]
  20. OsypovK.1999. Refraction tomography without ray tracing. 69th SEG meeting, Houston , USA , Expanded Abstracts, 1283–1286.
  21. PalmerD.1976. An application of the time section in shallow seismic refraction studies . MSc thesis, The University of Sydney .
  22. PalmerD.1980. The Generalized Reciprocal Method of Seismic Refraction Interpretation . Society of Exploration Geophysicists, Tulsa , OK .
    [Google Scholar]
  23. PalmerD.1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics46, 1508–1518.DOI: 10.1190/1.1441157
    [Google Scholar]
  24. PalmerD.1986. Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity . Geophysical Press.
    [Google Scholar]
  25. PalmerD.2001a. Digital processing of shallow seismic refraction data with the refraction convolution section . PhD thesis, University of New South Wales .
  26. PalmerD.2001b. Imaging refractors with the convolution section. Geophysics66, 1582–1589.DOI: 10.1190/1.1487103
    [Google Scholar]
  27. PalmerD.2001c. A new direction for shallow refraction seismology: integrating amplitude and traveltimes with refraction convolution section. Geophysical Prospecting49, 657–673.DOI: 10.1046/j.1365-2478.2001.00293.x
    [Google Scholar]
  28. PalmerD. and JonesL.2003. Detailed refraction statics with the GRM and the RCS. 16th ASEG Geophysical Conference and Exhibition, Adelaide , Australia , Extended Abstracts, 102: 72.
  29. PullammanappallilS.K. and LouieJ.N.1994. A generalized simulated‐annealing optimization for inversion of first‐arrival times. Bulletin of the Seismological Society of America84, 1397–1409.
    [Google Scholar]
  30. RockwellD.W.1967. A general wavefront method. In: Seismic Refraction Prospecting (ed. A.W.Musgrave ), pp. 363–415. Society of Exploration Geophysicists , Tulsa , OK .
    [Google Scholar]
  31. SchusterG.T. and Quintus‐BoszA.1993. Wavepath eikonal traveltime inversion: Theory. Geophysics58, 1314–1323.DOI: 10.1190/1.1443514
    [Google Scholar]
  32. SjogrenB.1979. Refractor velocity determination – cause and nature of some errors. Geophysical Prospecting27, 507–538.
    [Google Scholar]
  33. SjogrenB.1984. Shallow Refraction Seismic . Chapman & Hall.
    [Google Scholar]
  34. TanerM.T., MatsuokaT., BaysalE., LuL. and YilmazO.1992. Imaging with refractive seismic waves. 62nd SEG meeting, New Orleans , USA , Expanded Abstracts, 1132–1135.
  35. ThornburgH.R.1930. Wavefront diagrams in seismic interpretation. AAPG Bulletin14, 185–200.
    [Google Scholar]
  36. WatanabeT., MatsuokaT. and AshidaY.1999. Seismic traveltime tomography using Fresnel volume approach. 69th SEG meeting, Houston , USA , Expanded Abstracts , 1402–1405.
  37. WhiteD.J.1989. Two‐dimensional seismic refraction tomography. Geophysical Journal International97, 223–245.
    [Google Scholar]
  38. ZeltC.A. and SmithR.B.1992. Seismic traveltime inversion for 2‐D crustal velocity structure. Geophysical Journal International108, 16–34.
    [Google Scholar]
  39. ZhangJ., BrinkU.S. and ToksözM.N.1998. Nonlinear refraction and reflection traveltime tomography. Journal of Geophysical Research103, 29743–29757.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2005.00478.x
Loading
/content/journals/10.1111/j.1365-2478.2005.00478.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error