1887
Volume 56, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Negative self‐potential anomalies can be generated at the ground surface by ore bodies and ground water contaminated with organic compounds. These anomalies are connected to the distribution of the redox potential of the ground water. To study the relationship between redox and self‐potential anomalies, a controlled sandbox experiment was performed. We used a metallic iron bar inserted in the left‐hand side of a thin Plexiglas sandbox filled with a calibrated sand infiltrated by an electrolyte. The self‐potential signals were measured at the surface of the tank (at different time lapses) using a pair of non‐polarizing electrodes. The self‐potential, the redox potential, and the pH were also measured inside the tank on a regular grid at the end of the experiment. The self‐potential distribution sampled after six weeks presents a strong negative anomaly in the vicinity of the top part of the iron bar with a peak amplitude of −82 mV. The resulting distributions of the pH, redox, and self‐potentials were interpreted in terms of a geobattery model combined with a description of the electrochemical mechanisms and reactions occurring at the surface of the iron bar. The corrosion of iron yields the formation of a resistive crust of fougerite at the surface of the bar. The corrosion modifies both the pH and the redox potential in the vicinity of the iron bar. The distribution of the self‐potential is solved with Poisson's equation with a source term given by the divergence of a source current density at the surface of the bar. In turn, this current density is related to the distribution of the redox potential and electrical resistivity in the vicinity of the iron bar. A least‐squares inversion method of the self‐potential data, using a 2D finite difference simulation of the forward problem, was developed to retrieve the distribution of the redox potential.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2007.00675.x
2008-01-11
2020-05-30
Loading full text...

Full text loading...

References

  1. AroraT., LindeN., RevilA. and CastermantJ.2007. Non‐intrusive determination of the redox potential of contaminant plumes by using the self‐potential method. Journal of Contaminant Hydrology92, 274–292. doi:DOI: 10.1016/j.jconhyd.2007.01.018.
    [Google Scholar]
  2. BigalkeJ. and GrabnerE.W.1997. The geobattery model: A contribution to large‐scale electrochemistry. Electrochimica Acta42, 3443–3452.
    [Google Scholar]
  3. BigalkeJ., JungeA. and ZulaufG.2004. Electronically conducting brittle‐ductile shear zones in the crystalline basement of Rittsteig (Bohemian Massif, Germany): Evidence from self potential and hole‐to‐surface electrical measurements. International Journal of Earth Sciences93, 44–51.
    [Google Scholar]
  4. BockrisJ.O'M. and ReddyA.K.N.1970. Modern Electrochemistry , Vol. 2. Plenum Press, New York .
    [Google Scholar]
  5. BolèveA., CrespyA., RevilA., JanodF. and MattiuzzoJ.L.2007. Streaming potentials of granular media: Influence of the Dukhin and Reynolds numbers. Journal of Geophysical Research112, B08204. doi:DOI: 10.1029/2006JB004673.
    [Google Scholar]
  6. BølvikenB.1978. The redox potential field of the Earth. In: Origin and Distribution of the Elements , Proceedings of the Second Symposium, Paris , Unesco , May 1977 (ed. L.H.Ahrens ), pp. 649–665. Pergamon Press, New York .
    [Google Scholar]
  7. BølvikenB. and LognO.1975. An electrochemical model for element distribution around sulphide bodies. In: Geochemical Exploration 1974 (eds  I.L.Elliot and W.K.Flecher ), pp. 631–648. Elsevier, Amsterdam .
    [Google Scholar]
  8. ChristensenT.H., BjergP.L., BanwartS.A., JakobsenR., HeronG. and AlbrechtsenH.J.2000. Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology45, 165–241.
    [Google Scholar]
  9. CorwinR.F. and HooverD.B.1979. Self‐potential method in geothermal exploration. Geophysics44, 226–245.
    [Google Scholar]
  10. DarnetM., MarquisG. and SailhacP.2006. Hydraulic stimulation of geothermal reservoirs: Fluid flow, electric potential, and microseismicity relationships. Geophysical Journal International166, 438–444. doi:DOI: 10.1111/j.1365-246X.2006.03026.x.
    [Google Scholar]
  11. FinizolaA., SortinoF., LénatJ.F. and ValenzaM.2002. Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self‐potential and CO2 surveys. Journal of Volcanology and Geothermal Research116, 1–18.
    [Google Scholar]
  12. FinizolaA., SortinoF., LénatJ.F., AubertM., RipepeM. and ValenzaM.2003. The summit hydrothermal system of Stromboli. New insights from self‐potential, temperature, CO2 and fumarolic fluid measurements, with structural and monitoring implications. Bulletin on Volcanology65, 486–504.
    [Google Scholar]
  13. FittermanD.V.1976. Calculation of self‐potential anomalies generated by Eh potential gradients. USGS Open file report, pp. 76–88.
  14. FittermanD.V.1979. Theory of electrokinetic‐magnetic anomalies in a faulted half‐space. Journal of Geophysical Research84, 6031–6041.
    [Google Scholar]
  15. FournierC.1989. Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: Case history of the Chaîne des Puys (Puy‐de‐Dôme, France). Geophysical Prospecting37, 647–668.
    [Google Scholar]
  16. FoxR.W.1830. On the electromagnetic properties of metalliferous veins in the mines of Cornwall. Philosophical Transactions of the Royal Society120, 399–414.
    [Google Scholar]
  17. GoldieM.2004. Self‐potentials associated with the Yanacocha high sulfidation gold deposit in Peru. Geophysics67, 684–689.
    [Google Scholar]
  18. HämmannM., MaurerH.R., GreenA.G. and HorstmeyerH.1997. Self‐potential image reconstruction: Capabilities and limitations. Journal of Environmental and Engineering Geophysics2, 21–35.
    [Google Scholar]
  19. HansenP.C.1998. Rank‐Deficient and Discrete Ill‐Posed Problems: Numerical Aspects of Linear Inversion . SIAM, Philadelphia .
    [Google Scholar]
  20. IshidoT. and PritchettJ.W.1999. Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. Journal of Geophysical Research104, 15247–15259.
    [Google Scholar]
  21. Jardani, A., RevilA., SantosF., FauchardC. and DupontJ.P.2007. Detection of preferential infiltration pathways in sinkholes using joint inversion of self‐potential and EM‐34 conductivity data. Geophysical Prospecting55, 1–11. doi:DOI: 10.1111/j.1365-2478.2007.00638.x.
    [Google Scholar]
  22. JardaniA., RevilA., AkoaF., SchmutzM., FlorschN. and DupontJ.P.2006a. Least‐squares inversion of self‐potential (SP) data and application to the shallow flow of the ground water in sinkholes. Geophysical Research Letters33, L19306. doi:DOI: 10.1029/2006GL027458.
    [Google Scholar]
  23. JardaniA., DupontJ.P. and RevilA.2006b. Self‐potential signals associated with preferential groundwater flow pathways in sinkholes. Journal of Geophysical Research111, B09204. doi:DOI: 10.1029/2005JB004231.
    [Google Scholar]
  24. JardaniA., RevilA. and DupontJ.P.2006c. Self‐potential tomography applied to the determination of cavities. Geophysical Research Letters33, L13401. doi:DOI: 10.1029/2006GL026028.
    [Google Scholar]
  25. LindeN., JougnotD., RevilA., MatthaïS. K., AroraT., RenardD. and DoussanC.2007a. Streaming current generation in two‐phase flow conditions. Geophysical Research Letters34, L03306. doi:DOI: 10.1029/2006GL028878.
    [Google Scholar]
  26. LindeN., RevilA., BolèveA., DagèsC., CastermantJ., SuskiB. and VoltzM.2007b. Estimation of the water table throughout a catchment using self‐potential and piezometric data in a Bayesian framework. Journal of Hydrology334, 88–98.
    [Google Scholar]
  27. LindeN. and RevilA.2007. Inverting residual self‐potential data for redox potentials of contaminant plumes. Geophysical Research Letters34, L14302. doi:DOI: 10.1029/2007GL030084.
    [Google Scholar]
  28. MacaskillJ.B. and BatesR.G.1978. Standard potential of the silver‐silver chloride electrode. Pure and Applied Chemistry50, 1701–1706.
    [Google Scholar]
  29. MaineultA., BernabéY. and AckererP.2005. Detection of advected concentration and pH fronts from self‐potential measurements. Journal of Geophysical Research110, B11205. doi:DOI: 10.1029/2005JB003824.
    [Google Scholar]
  30. MaineultA., BernabéY. and AckererP.2006. Detection of advected, reacting redox fronts from self‐potential measurements. Journal of Contaminant Hydrology86, 32–52.
    [Google Scholar]
  31. MassenetF. and PhamV.N.1985. Experimental and theoretical basis of self‐potential phenomena in volcanic areas with reference to results obtained on Mount Etna (Sicily). Earth Planetary Sciences Letters73, 415–429.
    [Google Scholar]
  32. MendonçaC.A. (in press), A forward and inverse formulation for self‐potential data in mineral exploration. Geophysics.
    [Google Scholar]
  33. MenkeW.1989. Geophysical Data Analysis: Discrete Inverse Theory . Academic Press.
    [Google Scholar]
  34. MinsleyB.J., SogadeJ. and MorganF.D.2007. Three‐dimensional self‐potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina. Water Resources Research43, W04429. doi:DOI: 10.1029/2005WR003996.
    [Google Scholar]
  35. MuftiI.R.1976. Finite‐difference resistivity modelling for arbitrarily shaped two‐dimensional structures. Geophysics41, 62–78.
    [Google Scholar]
  36. NaudetV., RevilA. and BotteroJ.‐Y.2003. Relationship between self‐potential (SP) signals and redox conditions in contaminated groundwater. Geophysical Research Letters30, 2091. doi:DOI: 10.1029/2003GL018096.
    [Google Scholar]
  37. NaudetV., RevilA., RizzoE., BotteroJ.‐Y. and BégassatP.2004. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences8, 8–22.
    [Google Scholar]
  38. NaudetV. and RevilA.2005. A sandbox experiment to investigate bacteria‐mediated redox processes on self‐potential signals. Geophysical Research Letters32, L11405. doi:DOI: 10.1029/2005GL022735.
    [Google Scholar]
  39. NourbehechtB.1963. Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectric problems . PhD thesis, Massachusetts Institute of Technology , Cambridge , MA .
    [Google Scholar]
  40. NtarlagiannisD., AtekwanaE.A., HillE.A. and GorbyY.2007. Microbial nanowires: Is the subsurface “hardwired”?Geophysical Research Letters34, L17305. doi:DOI: 10.1029/2007GL030426.
    [Google Scholar]
  41. NyquistJ.E. and CoreyC.E.2002. Self‐potential: The ugly duckling of environmental geophysics. The Leading Edge21, 446–451. doi:DOI: 10.1190/1.1481251.
    [Google Scholar]
  42. PaulM.K.1965. Direct interpretation of self‐potential anomalies caused by inclined sheets of infinite horizontal extensions. Geophysics30, 418–423.
    [Google Scholar]
  43. RaoA.D. and BabuR.H.V.1984. Quantitative interpretation of self‐potential anomalies due to two‐dimensional sheet like bodies. Geophysics48, 1659–1664.
    [Google Scholar]
  44. RevilA. and PezardP.A.1998. Streaming potential anomaly along faults in geothermal areas. Geophysical Research Letters25, 3197–3200.
    [Google Scholar]
  45. RevilA. and LeroyP.2001. Hydroelectric coupling in a clayey material. Geophysical Research Letters28, 1643–1646.
    [Google Scholar]
  46. RevilA., EhouarneL. and ThyreaultE.2001. Tomography of self‐potential anomalies of electrochemical nature. Geophysical Research Letters28, 4363–4366.
    [Google Scholar]
  47. RevilA.SaraccoG. and LabazuyP.2003a. The volcano‐electric effect. Journal of Geophysical Research108, 2251. doi:DOI: 10.1029/2002JB001835.
    [Google Scholar]
  48. RevilA., NaudetV., NouzaretJ. and PesselM.2003b. Principles of electrography applied to self‐potential electrokinetic sources and hydrogeological applications. Water Resources Research39, 1114. doi:DOI: 10.1029/2001WR000916.
    [Google Scholar]
  49. RevilA.FinizolaA., SortinoF. and RipepeM.2004. Geophysical investigations at Stromboli volcano, Italy. Implications for ground‐water flow and paroxysmal activity. Geophysical Journal International157, 426–440.
    [Google Scholar]
  50. RevilA. and LindeN.2006. Chemico‐electromechanical coupling in microporous media. Journal of Colloid and Interface Science302, 682–694.
    [Google Scholar]
  51. RevilA., LindeN., CerepiA., JougnotD., MatthäiS. and FinsterleS.2007. Electrokinetic coupling in unsaturated porous media. Journal of Colloid and Interface Science313, 315–327. doi:DOI: 10.1016/j.jcis.2007.03.037.
    [Google Scholar]
  52. RevilA.2007. Comment on “Effect of the flow state on streaming current” by Osamu Kuwano, Masao Nakatani, and Shingo Yoshida. Geophysical Research Letters34, L09311. doi:DOI: 10.1029/2006GL028806.
    [Google Scholar]
  53. RizzoE., SuskiB., RevilA., StrafaceS. and TroisiS.2004. Self‐potential signals associated with pumping‐tests experiments. Journal of Geophysical Research109, B10203. doi:DOI: 10.1029/2004JB003049.
    [Google Scholar]
  54. SamsonE., MarchandJ. and SnyderK.A.2003. Calculation of ionic diffusion coefficients on the basis of migration test results. Material and Structures36, 156–165.
    [Google Scholar]
  55. SatoM. and MooneyH.M.1960. The electrochemical mechanism of sulphide self‐potentials. Geophysics25, 226–249.
    [Google Scholar]
  56. ShefferM.R. and OldenburgD.W.2007. Three‐dimensional modelling of streaming potential. Geophysical Journal International169, 839–848.
    [Google Scholar]
  57. SimonL.1998. Réactivité des espèces du fer en milieu aqueux contenant des anions de la famille du souffre : sulfite, sulfate, thiosulfate, séléniate . PhD thesis, University of Nancy, Nancy .
    [Google Scholar]
  58. SivenasP. and BealesF.W.1982. Natural geobatteries associated with sulphide ore deposits. I. Theoretical studies. Journal of Geochemical Exploration17, 123–143.
    [Google Scholar]
  59. StollJ., BigalkeJ. and GrabnerE.W.1995. Electrochemical modelling of self‐potential anomalies. Surveys in Geophysics16, 107–120.
    [Google Scholar]
  60. SrinivasanR., LinR., SpicerR.L. and DavisB.H.1996. Structural features in the formation of the green rust intermediate and g‐FeOOH. Colloids and Surfaces, A. Physicochemical and Engineering Aspects113, 97–105.
    [Google Scholar]
  61. StrafaceS., FalicoC., TroisiS., RizzoE. and RevilA.2007. Estimating of the transmissivities of a real aquifer using self potential signals associated with a pumping test. Ground Water45, 420–428.
    [Google Scholar]
  62. SuskiB., RizzoE. and RevilA.2004. A sandbox experiment of self‐potential signals associated with a pumping‐test. Vadose Zone Journal3, 1193–1199.
    [Google Scholar]
  63. SuskiB., RevilA., TitovK., KonosavskyP., DagèsC., VoltzM. and HuttelO.2006. Monitoring of an infiltration experiment using the self‐potential method. Water Resources Research42, W08418. doi:DOI: 10.1029/2005WR004840.
    [Google Scholar]
  64. TitovK., RevilA., KonasovskyP., StrafaceS. and TroisiS.2005. Numerical modelling of self‐potential signals associated with a pumping test experiment. Geophysical Journal International162, 641–650.
    [Google Scholar]
  65. TikhonovA.N. and ArseninV.Y.1977. Solutions of Ill‐posed Problems . John Wiley & Sons, Washington .
    [Google Scholar]
  66. TimmF. and MöllerP.2001. The relation between electric and redox potential: Evidence from laboratory and field measurements. Journal of Geochemical Exploration72, 115–128.
    [Google Scholar]
  67. ThornberM.R.1975a. Supergene alteration of sulphides. I. A chemical model based on massive nickel deposits at Kambalda, Western Australia. Chem. Geol.15, 1–14.
    [Google Scholar]
  68. ThornberM.R.1975b. Supergene alteration of sulphides. II. A chemical study of the Kambalda nickel deposits. Chemical Geology15, 116–144.
    [Google Scholar]
  69. TrolardF., GeninJ.M.R., AbdelmoulaM., BourriéG., HumbertB. and HerbillonA.1997. Identification of a green rust mineral in a reductomorphic soil by Mossbauer and Raman spectroscopies. Geochimica et Cosmochimica Acta61, 1107–1111.
    [Google Scholar]
  70. TrolardF.2006. Fougerite: From field experiment to the homologation of the mineral. C. R. Geoscience338, 1158–1166.
    [Google Scholar]
  71. TrolardF., BourriéG., AbdelmoulaM., RefaitP. and FederF.2007. Fougerite, a new mineral of the pyroaurite‐Iowaite group: Description and crystal structure. Clays and Clay Minerals55, 324–335.
    [Google Scholar]
  72. ZhdanovM.2002. Geophysical Inverse Theory and Regularization Problems . Elsevier, Amsterdam .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2007.00675.x
Loading
/content/journals/10.1111/j.1365-2478.2007.00675.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error