1887
Volume 56, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In this paper we investigate finite‐frequency effects in crustal tomography. We developed an inversion procedure based on an exact numerical computation of the sensitivity kernels. In this approach we compute the 3D travel‐time sensitivity kernels by using (1) graph theory and an additional bending to estimate accurately both rays and travel‐times between source/receiver and diffraction points and (2) paraxial ray theory to estimate the amplitude along theses rays. We invert both the velocity and the hypocentre parameters, using these so‐called banana‐doughnut kernels and the LSQR iterative solver. We compare the ray‐theoretical and the finite‐frequency tomography to image the intermediate structures beneath the Gulf of Corinth (Greece), which has long been recognized as the most active continental rifting zone in the Mediterranean region. Our dataset consists of 451 local events with 9233 P‐ first‐arrival times recorded in the western part of the Gulf (Aigion area) in the framework of the 3F‐Corinth European project. Previous tomographic images showed a complex velocity crustal model and a low‐dip surface that may accommodate the deformation. Accurate velocity models will help to better constrain the rifting process, which is still a subject of debate. The main results of this study show that finite‐frequency tomography improves crustal tomographic images by providing better resolved images of the 3D complicated velocity structure. Because the kernels spread the information over a volume, finite‐frequency tomography results in a sharpening of layer boundaries as we observed for the shallower part of the crust (down to 5 km depth) beneath the Gulf of Corinth.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2007.00683.x
2008-06-28
2020-01-24
Loading full text...

Full text loading...

References

  1. AkiK. and LeeW.1976. Determination of three‐dimensional velocity anomalies under a seismic array using first P‐arrival times from local earthquakes. Journal of Geophysical Research81, 4381–4399.
    [Google Scholar]
  2. ArmijoR., MeyerB., KingG., RigoA. and PapanastassiouD.1996. Quaternary evolution of the Corinth Rift and its implication for the late Cenozoic evolution of the Aegean. Geophyical Journal International126, 11–53.
    [Google Scholar]
  3. AubouinJ., BrunnJ., CeletP., DercourtJ., GodfriauxI. and MercierJ.1962. Esquisse de la géologie de la Grèce. Les Mémoires Hors Série Société Géologique de France2, 583–610.
    [Google Scholar]
  4. AvalloneA., BrioleP., Agatza‐BalodimiouA., BIrillisH., CharadeO., MitsakakiC. et al . 2004. Analysis of eleven years of deformation measured by GPS in the Corinth Rift laboratory area. C.R. Geoscience336, 301–311.
    [Google Scholar]
  5. BenzH.M., ChouetS.A., DawsonP.B., LahrJ.C., PageR.A. and HoleJ.A.1996. Three‐dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. Journal of Geophysical Research101, 8111–8128.
    [Google Scholar]
  6. BernardP., BrioleP., MeyerB., Lyon‐CaenH., GomezJ.M., TiberiC. et al . 1997. A low angle normal fault earthquake: The Ms =,3D6.2, June, 1995 Aigion earthquake (Greece). Journal of Seismology1, 131–150.
    [Google Scholar]
  7. BrioleP., RigoA., Lyon‐CaenH., RueggJ. C., PapazissiK., MistakakiC. et al . 2000. Active deformation of the Gulf of Korinthos, Greece: Results from repeated GPS surveys between 1990 and 1995. Journal of Geophysical Research105, 25605–25625.
    [Google Scholar]
  8. DahlenF.A., HungS.H. and NoletG.2000. Fréchet kernels for finite‐frequency traveltimes – I. Theory. Geophysical Journal International141, 157–174.
    [Google Scholar]
  9. DahlenF.A. and NoletG.2005. Comment on the paper “On sensitivity kernels for wave‐equation transmission tomography” by de Hoop and Van der Hilst. Geophysical Journal International163, 949–951.
    [Google Scholar]
  10. De HoopM.V. and Van der HilstR.D.2005. Reply to comment by F.A. Dahlen and G. Nolet on “On sensitivity kernels for ‘wave equation’ transmission tomography”. Geophysical Journal International163, 952–955. doi:DOI: 10.1111/j.1365-246X.2005.02794.x
    [Google Scholar]
  11. DelostM., VirieuxJ. and OpertoS.2008. First‐arrival traveltime tomography using second wavelets. Geophysical Prospecting56, this issue.
    [Google Scholar]
  12. DornsiepenU.F., ManutsogluE. and MertmannD.2001. Permian‐Triassic paleogeography of the external Hellenides. Paleogeography Paleoclimatology Paleoecology172, 327–338.
    [Google Scholar]
  13. DoutsosT. and PoulimenosG.1992. Geometry and kinematics of active faults and their seismotectonic significance in the western Corinth‐Patras rift (Greece). Journal of Structural Geology14, 689–699.
    [Google Scholar]
  14. FlottéN. and SorelD.2001. Structural cross sections through the Corinth‐Patras detachment fault‐system in Northern Peloponnesus (Aegean Arc, Greece). Bulletin of the Geological Society of GreeceXXXIV, 235–241.
    [Google Scholar]
  15. GautierS., LatorreD., VirieuxJ., DeschampsA., SkarpelosC., SotiriouA. et al . 2006. A new passive tomography of the Aigion area (Gulf of Corinth, Greece) from the 2002 dataset. PAGEOPH163, 431–453. doi:DOI: 10.1007/500024-005-0033-7
    [Google Scholar]
  16. HatzfeldD., KarakostasV., ZiaziaM., KassarasI., PapadimitriouE., MakropoulosK. et al . 2000. Microseismicity and faulting geometry in the Gulf of Corinth (Greece). Geophysical Journal International141, 438–456.
    [Google Scholar]
  17. HungS. H., DahlenF.A. and NoletG.2000. Fréchet kernels for finite‐frequency traveltimes ‐II. Examples. Geophysical Journal International141, 175–203.
    [Google Scholar]
  18. HungS. H., DahlenF.A. and NoletG.2001. Wavefront healing: A banana‐doughnut perspective. Geophysical Journal International146, 289–312.
    [Google Scholar]
  19. HungS. H., ShenY. and ChiaoL. Y.2004. Imaging seismic velocity structure beneath the Iceland hotspot – A finite‐frequency approach. Journal of Geophysical Research109, B08305. doi:DOI: 10.1029/2003JB002889
    [Google Scholar]
  20. JacobshagenV., DurrV., KockelF., KoppK.O., KowalczykG., BerckhemerH. et al . 1978. Structure and geodynamic evolution of the Aegean region. In: Alpes Apennines Hellenides (eds H.Closs , D.Roeder , K.Schmidt and K.Schweiz‐Verlag ), pp. 537–564. E. Schweizerbart'sche Verlag, Stuttgart .
    [Google Scholar]
  21. LatorreD., VirieuxJ., MonfretT., MonteillerV., VanorioT., GotJ. L. et al . 2004. A new seismic tomography of Aigion area (Gulf of Corinth‐Greece) from a 1991 data set. Geophysical Journal International159, 1013–1031.
    [Google Scholar]
  22. Le MeurH., VirieuxJ. and PodvinP.1997. Seismic tomography of the Gulf of Corinth: A comparison of methods. Annals of GeophysicsXL, 1–25.
    [Google Scholar]
  23. LevshinA.L., BarminM.P., RitzwollerM.H. and TrampertJ.2005. Minor‐arc and major‐arc global surface wave diffraction tomography. Physics of the Earth and Planetary Interiors149, 205–223.
    [Google Scholar]
  24. Lyon‐CaenH., PapadimitriouP., DeschampsA., BernardP., MakropoulosK., PacchianiF. et al . 2004. First results of the CRLN seismic array in the western Corinth rift: Evidence for old fault reactivation. C.R. Geoscience336, 343–351.
    [Google Scholar]
  25. MarqueringH., DahlenF.A. and NoletG.1999. Three‐dimensional sensitivity kernels for finite‐frequency traveltimes: The banana‐doughnut paradox. Geophysical Journal International137, 805–815.
    [Google Scholar]
  26. MontelliR., NoletG., MastersG., DahlenF. and HungS.‐H., 2004. Global P and PP traveltime tomography: Rays versus waves. Geophysical Journal International158, 637–654.
    [Google Scholar]
  27. MoserT.J.1991. Shortest path calculation of seismic rays. Geophysics56, 59–67.
    [Google Scholar]
  28. NoletG.2008. A Breviary of Seismic Tomography . Cambridge University Press (in press).
    [Google Scholar]
  29. NoletG. and DahlenF.A.2000. Wavefront healing and the evolution of seismic delay times. Journal of Geophysical Research105, 19043–19054.
    [Google Scholar]
  30. PaigeC.C. and SaundersM.A.1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software8, 43–71.
    [Google Scholar]
  31. PhamV.N., BernardP., BoyerD., ChouliarasG., MouelJ.L.L. and StavrakakisG.N.2000. Electrical conductivity and crustal structure beneath the Central Hellenides around the Gulf of Corinth (Greece) and their relationship with the seismotectonics. Geophysical Journal International142, 948–969.
    [Google Scholar]
  32. RietbrockA., TiberiC., ScherbaumF. and Lyon‐CaenH.1996. Seismic slip on a low angle normal fault in the Gulf of Corinth: Evidence from high‐resolution cluster analysis of microearthquakes. Geophysical Research Letters23, 1817–1820.
    [Google Scholar]
  33. RigoA., Lyon‐CaenH., ArmijoR., DeschampsA., HatzfeldD., MakropoulosK. et al . 1996. A microseismic study in the western part of the Golf of Corinth (Greece): Implications for large‐scale normal faulting mechanisms. Geophysical Journal International126, 663–688.
    [Google Scholar]
  34. SachapziM., ClémentC., LaigleM., HirnA. and RoussosN.2003. Rift structure, evolution, and earthquakes in the Gulf of Corinth, from reflection seismic images. Earth and Planetary Science Letters216, 243–257.
    [Google Scholar]
  35. SieminskiA., LévêqueJ.J. and DebayleE.2004. Can finite‐frequency effects be accounted for in ray theory surfacewave tomography?Geophysical Research Letters31, L24614. doi:DOI: 10.1029/2004GL021402
    [Google Scholar]
  36. ShengJ., LeedA., BuddensiekM. and SchusterG.2006. Early arrival waveform tomography on near‐surface refraction data. Geophysics71, 47–57.
    [Google Scholar]
  37. SorelD.2000. A Pliocene and still active detachment fault and the origin of the Corinth‐Patras rift, Greece. Geology28, 83–86.
    [Google Scholar]
  38. SpakmanW. and NoletG.1988. Imaging algorithms, accuracy and resolution. In: Mathematical Geophysics (ed. N.Vlaar ), pp. 155–187. D. Reidel Publishing, Dordrecht .
    [Google Scholar]
  39. SpencerC.P. and GubbinsD.1980. Travel‐time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media. Geophysical Journal of the Royal Astronomical Society63, 95–116.
    [Google Scholar]
  40. SpetzlerJ., TrampertJ. and SniederR.2002. The effects of scattering in surface wave tomography. Geophysical Journal International149, 755–767
    [Google Scholar]
  41. TapeC., LiuQ. and TrompJ.2007. Finite‐frequency tomography using adjoint methods: Methodology and examples using membrane surface waves. Geophysical Journal International168, 1105–1129. doi:DOI: 10.1111/j.1365-246X.2006.03191.x
    [Google Scholar]
  42. ThurberC.H.1992. Hypocenter‐velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors75, 55–62.
    [Google Scholar]
  43. TiberiC., DiamentM., Lyon‐CaenH. and KingT.2001. Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data. Geophysical Journal International145, 797–808.
    [Google Scholar]
  44. TrampertJ. and SpetzlerJ.2006. Surface wave tomography: finite frequency effects lost in the null space. Geophysical Journal International164, 394–400.
    [Google Scholar]
  45. Van der HilstR.D. and De HoopM.V.2005. Banana‐doughnut kernels and mantle tomography. Geophysical Journal International163, 956–961. doi:DOI: 10.1111/j.1365-246X.2005.02817.x
    [Google Scholar]
  46. VirieuxJ. and FarraV.1991. Ray tracing in 3‐D complex isotropic media: An analysis of the problem. Geophysics56, 2057–2069.
    [Google Scholar]
  47. WangY. and PrattR.1997. Sensitivities of seismic traveltimes and amplitudes in reflection tomography. Geophysical Journal International131, 618–642.
    [Google Scholar]
  48. WangY.1999. Simultaneous inversion for model geometry and elastic parameters. Geophysics64, 182–190.
    [Google Scholar]
  49. WielandtE.1987. On the validity of the ray approximation for interpreting delay times. In: Seismic tomography (ed. G.Nolet ), pp. 85–98. D. Reidel Publishing, Dordrecht .
    [Google Scholar]
  50. YangT., ShenY., Van der LeeS., SolomonS. C., HungS. H.2006. Upper mantle structure beneath the Azores hotspot from finite‐frequency seismic tomography. Earth and Planetary Science Letters250, 11–26.
    [Google Scholar]
  51. YoshizawaK. and KennettB.L.N.2002. Determination of the influence zone for surface wave paths. Geophysical Journal International149, 440–453.
    [Google Scholar]
  52. YoshizawaK. and KennettB.L.N.2004. Multimode surface wave tomography for the Australian region using a three‐step approach incorporating finite frequency effects. Journal of Geophysical Research109, B02310. doi:DOI: 10.1029/2002JB002254
    [Google Scholar]
  53. ZhaoL., JordanT.H. and ChapmanC.H.2000. Three‐dimensional Fréchet kernels for seismic delay times. Geophysical Journal International141, 558–576.
    [Google Scholar]
  54. ZhouY., DahlenF.A. and NoletG.2004. Three‐dimensional sensitivity kernels for surface wave observables. Geophysical Journal International158, 142–168.
    [Google Scholar]
  55. ZhouY., DahlenF.A., NoletG. and LaskeG.2005. Finite‐frequency effects in global surface‐wave tomography. Geophysical Journal International163, 1087–1111.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2007.00683.x
Loading
/content/journals/10.1111/j.1365-2478.2007.00683.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error