1887
Volume 56, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Random field cross‐correlation is a new promising technique for seismic exploration, as it bypasses shortcomings of usual active methods. Seismic noise can be considered as a reproducible, stationary in time, natural source. In the present paper we show why and how cross‐correlation of noise records can be used for geophysical imaging. We discuss the theoretical conditions required to observe the emergence of the Green's functions between two receivers from the cross‐correlation of noise records. We present examples of seismic imaging using reconstructed surface waves from regional to local scales. We also show an application using body waves extracted from records of a small‐scale network. We then introduce a new way to achieve surface wave seismic experiments using cross‐correlation of unsynchronized sources. At a laboratory scale, we demonstrate that body wave extraction may also be used to image buried scatterers. These works show the feasibility of passive imaging from noise cross‐correlation at different scales.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2007.00684.x
2008-04-21
2020-07-05
Loading full text...

Full text loading...

References

  1. AkiK.1957. Space and time spectra of stationary stochastic waves with special reference to microtremors. Bulletin of the Earthquake Research Institute35, 415–456.
    [Google Scholar]
  2. BarminM.P., RitzwollerM.H. and LevshinA.L.2001. A fast and reliable method for surface wave tomography. Pure and Applied Geophysics158, 1351–1375.
    [Google Scholar]
  3. BattagliaJ., FerrazziniV., StaudacherT., AkiK. and CheminéeJ.‐L.2005. Pre‐eruptive migration of earthquakes at the Piton de la Fournaise volcano (Réunion Island). Geophysical Journal International161, 449–458.
    [Google Scholar]
  4. Ben‐ZionY. and MalinP.1991. San Andreas fault zone head waves near Parkfield, California . Science251, 1592–1594.
    [Google Scholar]
  5. BleibinhausF. and GebrandeH.2005. Crustal structure of the Eastern Alps along the TRANSALP profile from wide‐angle seismic tomography. Tectonophysics414, 51–69.
    [Google Scholar]
  6. BrenguierF., ShapiroN.M., CampilloM., NercessianA. and FerrazziniV.2007. 3‐D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlation. Geophysical Research Letters34, L02305.
    [Google Scholar]
  7. BrenguierF., ShapiroN.M., CampilloM., FerrazziniZ., DuputelZ., CoutantO. and NercessianA.2008. Toward forecasting volcanic eruptions using seismic noise. Nature Geoscience, in press.
    [Google Scholar]
  8. CampilloM.2006. Phase and correlation in ‘random’ seismic fields and the reconstruction of the Green function. Pure and Applied Geophysics163, 475–502.
    [Google Scholar]
  9. CampilloM. and PaulA.2003. Long‐range correlations in the diffuse seismic coda. Science299, 547–549.
    [Google Scholar]
  10. CatchingsR.D., RymerM.J., GoldmanM.R., HoleJ.A., HugginsR. and LippusC.2002. High‐resolution seismic velocities and shallow structure of the San Andreas fault zone at Middle Mountain, Parkfield, California. Bulletin of the Seismological Society of America92, 2493–2503.
    [Google Scholar]
  11. ClaerboutJ.F.1968. Synthesis of a layered medium from its acoustics transmission response. Geophysics33, 264–269.
    [Google Scholar]
  12. Colin de VerdièreY.2006a. Mathematical models for passive imaging I: general background. URL http://fr.arxiv.org/abs/math‐ph/0610043/.
  13. Colin de VerdièreY.2006b. Mathematical models for passive imaging II: effective hamiltonians associated to surface waves. URL http://fr.arxiv.org/abs/math‐ph/0610044/.
  14. DerodeA., LaroseE., CampilloM. and FinkM.2003a. How to estimate the Green's function of a heterogeneous medium between two passive sensors? Application to acoustic waves. Applied Physics Letters83, 15, 3054–3056.
    [Google Scholar]
  15. DerodeA., LaroseE., TanterM., De RosnyJ., TourinA., CampilloM. and FinkM.2003b. Recovering the Green's function from field‐field correlations in an open scattering medium (L). The Journal of the Acoustical Society of America113, 2973–2976.
    [Google Scholar]
  16. DuvallT.L., JefferiesS.M., HarveyJ.W. and PomerantzM.A.1993. Time distance helioseismology. Nature362, 430–432.
    [Google Scholar]
  17. GillesP.M., DuvallT.L., ScherrerP.H. and BogartR.S.1997. A subsurface flow of material from the Sun equator's to its poles. Nature390, 52–54.
    [Google Scholar]
  18. GodinO.A.2007. Emergence of the acoustic Green's function from thermal noise. The Journal of the Acoustical Society of America121, EL96–EL102.
    [Google Scholar]
  19. GouédardP., RouxP. and CampilloM.30 August - 01 September 2006. Small scale geophysics inversion using surface waves extracted from noise cross‐correlation. In 3rd Internationnal Symposium on the Effects of Surface Geology on Seismic Motion.
    [Google Scholar]
  20. HerrmannR.B.1987. Computer programs in seismology. URL http://www.eas.slu.edu/People/RBHerrmann/ComputerPrograms.html.
  21. HoleJ., RybergT., FuisG., BleibinhausF. and SharmaA.2006. Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey. Geophysical Research Letters33, L07312.
    [Google Scholar]
  22. KangT.‐S. and ShinJ.S.2006. Surface‐wave tomography from ambient seismic noise of accelerograph networks in southern Korea. Geophysical Research Letters33, L17303.
    [Google Scholar]
  23. LaigleM., HirnA., SapinM., LépineJ., DiazJ., GallartJ. and NicolichR.2000. Mount Etna dense array local earthquake P and S tomography and implications for volcanic plumbing. Journal of Geophysical Research105, 21.633–21.646.
    [Google Scholar]
  24. LankarV.1997. Approches par tomographie sismique du Piton de la Fournaise, La Réunion . Thèse de doctorat, Institut de Physique du Globe de Paris, France .
    [Google Scholar]
  25. LaroseE., KhanA., NakamuraY. and CampilloM.2005. Lunar subsurface investigated from correlation of seismic noise. Geophysical Research Letters32, L16201.
    [Google Scholar]
  26. LaroseE., MargerinL., DerodeA., TiggelenB.V., CampilloM., ShapiroN.M., PaulA., StehlyL. and TanterM.2006a. Correlation of random wavefields: an interdisciplinary review. Geophysics71, 4, SI11–SI21.
    [Google Scholar]
  27. LaroseE., DerodeA., CampilloM. and FinkM.2004. Imaging from one‐bit correlation of wide‐band diffuse wavefield. Journal of Applied Physics95, 8393–8399.
    [Google Scholar]
  28. LaroseE., LobkisO.I. and WeaverR.L.2006b. Passive correlation imaging of a buried scatterer. The Journal of the Acoustical Society of America119, 3549–3552.
    [Google Scholar]
  29. LevshinA., YanocskayaT.B., LanderA.V., BukchinB.G., BarminM.P., RatnikovaL.I. and ItsE.N.1989. Seismic surface waves in a laterally inhomogeneous Earth . Kluwer Academic Publishers.
    [Google Scholar]
  30. LinF., RitzwollerM.H., TownendJ., BannisterS. and SavageM.2007. Ambiant noise Rayleigh wave tomography of New Zealand. Geophysical Journal International170, 649–666.
    [Google Scholar]
  31. LobkisO.I. and WeaverR.L.2001. On the emergence of the Green's function in the correlations of a diffuse field. The Journal of the Acoustical Society of America110, 3011–3017.
    [Google Scholar]
  32. MarchantR. and StampfliG.1996. Subduction of continental crust in the Western Alps. Tectonophysics269, 217–235.
    [Google Scholar]
  33. MasonW.P. and ThurstonR.N.1988. Physical Acoustics , vol. 18. Academic Press.
    [Google Scholar]
  34. PatanèD., BarberiG., CocinaO., De GoriP. and ChiarabbaC.2006. Time‐resolved seismic tomography detects magma intrusions at Mount Etna. Science313, 821–823.
    [Google Scholar]
  35. RammA.G.1986. Scattering by obstacles . Kluwer Academic Publisher.
    [Google Scholar]
  36. ReedM. and SimonB.1978. Methods of modern mathematical physics I, II, III, IV . Academic Press.
    [Google Scholar]
  37. RitzwollerM. and LevshinA.L.1998. Eurasian surface wave tomography: group velocities. Journal of Geophysical Research103, 4839–4878.
    [Google Scholar]
  38. RitzwollerM.H., ShapiroN.M., BarminM.P. and LevshinA.L.2002. Global surface wave diffraction tomography. Journal of Geophysical Research107, B12, 2335.
    [Google Scholar]
  39. RouxP. and KupermanW.A.2004. Extracting coherent wavefronts from acoustic ambient noise in the ocean. The Journal of the Acoustical Society of America116, 4, 1995–2003.
    [Google Scholar]
  40. RouxP., SabraK.G., GerstoftP. and KupermanW.A.2005a. P‐waves from cross‐correlation of seismic noise. Geophysical Research Letters32, L19303.
    [Google Scholar]
  41. RouxP., SabraK.G., KupermanW.A. and RouxA.2005b. Ambient noise cross correlation in free space: theoretical approach. The Journal of the Acoustical Society of America117, 1, 79–84.
    [Google Scholar]
  42. SabraK.G., GerstoftP., RouxP. and KupermanW.A.2005a. Surface wave tomography from microseisms in southern California. Geophysical Research Letters32, L14311.
    [Google Scholar]
  43. SabraK.G., RouxP. and KupermanW.A.2005b. Arrival‐time structure of the time‐averaged ambient noise cross‐correlation function in an oceanic waveguide. The Journal of the Acoustical Society of America117, 1, 164–174.
    [Google Scholar]
  44. SabraK.G., RouxP. and KupermanW.A.2005c. Emergence rate of the time‐domain Green's function from the ambient noise noise cross‐correlation. The Journal of the Acoustical Society of America118, 6, 3524–3531.
    [Google Scholar]
  45. Sánchez‐SesmaF.J. and CampilloM.2006. Retrieval of the Green function from cross correlation: the canonical elastic problem. Bulletin of the Seismological Society of America96, 1182–1191.
    [Google Scholar]
  46. Sánchez‐SesmaF.J., Pérez‐RuizJ., CampilloM., and LuzònF.2006. Elastodynamic 2‐D Green function retrieval from cross‐correlation: canonical inclusion problem. Geophysical Research Letters33, L13305.
    [Google Scholar]
  47. Sánchez‐SesmaF.J., Pérez‐RuizJ., LuzònF., CampilloM. and Rodriguez‐CastellanoA.2007. Diffuse fields in dynamic elasticity. Wave Motion, in press.
    [Google Scholar]
  48. ShapiroN.M. and CampilloM.2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters31, L07614.
    [Google Scholar]
  49. ShapiroN.M., CampilloM., PaulA., SinghS.K., JongmansD. and Sànchez‐SesmaF.J.1997. Surface‐wave propagation across the Mexican Volcanic Belt and the origin of the long‐period seismic‐wave amplification in the Valley of Mexico. Geophysical Journal International128, 151–166.
    [Google Scholar]
  50. ShapiroN.M., CampilloM., StehlyL. and RitzwollerM.H.march 2005. High‐resolution surface wave tomography from ambient seismic noise. Science307, 1615–1618.
    [Google Scholar]
  51. SherburnS., WhiteR.S. and ChadwickM.2006. Three‐dimensional tomographic imaging of the Taranaki volcanoes, New Zealand . Geophysical Journal International166, 957–969.
    [Google Scholar]
  52. SniederR.2004. Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. Physical Review E69, 4 Pt 2, 046610.
    [Google Scholar]
  53. StehlyL., CampilloM. and ShapiroN.2006. A study of the seismic noise from its long range correlation properties. Journal of Geophysical Research111, B10306.
    [Google Scholar]
  54. StehlyL., CampilloM. and ShapiroN.M.2007. Travel time measurements from noise correlation: stability and detection of instrumental time‐shifts. Geophysical Journal International171, 223–230.
    [Google Scholar]
  55. TanakaS., HamaguchiH., NishimuraT., YamawakiT., UekiS., NakamishiH., TsutsuiT., MiyamachiH., MatsuwoN., OikawaJ., OhminatoT., MiyaokaK., OnizawaS., MoriT. and Aizawa2002. Three‐dimensional P‐wave velocity structure of Iwate volcano, Japan from active seismic survey. Geophysical Research Letters29, 59–62.
    [Google Scholar]
  56. ThurberC., RoeckerS., ZhangH., BaherS., EllsworthW. and TanimotoT.2004. Fine‐scale structure of the San Andreas Fault Zone and location of the SAFOD target earthquakes (2004). Geophysical Research Letters31, L12S02.
    [Google Scholar]
  57. Van TiggelenB.A.2003. Green function retrieval and time reversal in a disordered world. Physical Review Letter91, 24, 243904.
    [Google Scholar]
  58. WaldhauserF., KisslingE., AnsorgeJ. and MuellerS.1998. Three‐dimensional interface modelling with two‐dimensional seismic data: the Alpine crust mantle boundary. Geophysical Journal International135, 264–278.
    [Google Scholar]
  59. WaldhauserF., LippitschR., KisslingE. and AnsorgeJ.2002. High‐resolution teleseismic tomography of upper‐mantle structure using an a priori three‐dimensional crustal model. Geophysical Journal International150, 403–414.
    [Google Scholar]
  60. WapenaarK.2004. Retrieving the elastodynamic Green's Function of an arbitrary inhomogeneous medium by cross‐correlation. Physical Review Letter93, 254301.
    [Google Scholar]
  61. WapenaarK.2006. Nonreciprocal Green's function retrieval by cross correlation. The Journal of the Acoustical Society of America120, 1, EL7–E13.
    [Google Scholar]
  62. WeaverR.L.2005. Information from seismic noise. Science307, 5715, 1568–1569.
    [Google Scholar]
  63. WeaverR.L. and LobkisO.I.2001. Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Physical Review Letter87, 13, 134301.
    [Google Scholar]
  64. WeaverR.L. and LobkisO.I.2003. Elastic wave thermal fluctuations, ultrasonic waveforms by correlation of thermal phonons. The Journal of the Acoustical Society of America113, 2611–2621.
    [Google Scholar]
  65. WeaverR.L. and LobkisO.I.2004. Diffuse fields in open systems and the emergence of the Green's function. The Journal of the Acoustical Society of America116, 5, 2731–2734.
    [Google Scholar]
  66. WeaverR.L. and LobkisO.I.2005a. Fluctuations in diffuse field‐field correlations and the emergence of the Green's function in open systems. The Journal of the Acoustical Society of America117, 3432–3439.
    [Google Scholar]
  67. WeaverR.L. and LobkisO.I.2005b. The mean and variance of diffuse field correlations in finite bodies. The Journal of the Acoustical Society of America118, 3447–3456.
    [Google Scholar]
  68. WeaverR.L. and LobkisO.I.2006. Diffuse fields in ultrasonics and seismology. Geophysics71, SI5–SI9.
    [Google Scholar]
  69. YangY., RitzwollerM.H., LevshinA.L. and ShapiroN.M.2007. Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International168, 259–274.
    [Google Scholar]
  70. YaoH., Van Der HilstR.D. and De HoopM.V.2006. Surface‐wave array tomography in SE Tibet from ambiant seismic noise and two‐station analysis – I. Phase velocity maps. Geophysical Journal International166, 732–744.
    [Google Scholar]
  71. ZolloA., D'AuriaL., MatteisR.D., HerreroA., VirieuxJ. and GaspariniP.2002. Bayesian estimation of 2‐D P‐velocity models from active seismic arrival time data: imaging of the shallow structure of Mt Vesuvius. Geophysical Journal International151, 566–582.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2007.00684.x
Loading
/content/journals/10.1111/j.1365-2478.2007.00684.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error