1887
Volume 56, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We propose a strategy for merging both active and passive data sets in linearized tomographic inversion. We illustrate this in the reconstruction of 3D images of a complex volcanic structure, the Campi Flegrei caldera, located in the vicinity of the city of Naples, southern Italy. The caldera is occasionally the site of significant unrests characterized by large ground uplifts and seismicity. The P and S velocity models of the caldera structure are obtained by a tomographic inversion based on travel times recorded during two distinct experiments. The first data set is composed of 606 earthquakes recorded in 1984 and the second set is composed of recordings for 1528 shots produced during the SERAPIS experiment in 2001. The tomographic inversion is performed using an improved method based on an accurate finite‐difference traveltime computation and a simultaneous inversion of both velocity models and earthquake locations. In order to determine the adequate inversion parameters and relative data weighting factors, we perform massive synthetic simulations allowing one to merge the two types of data optimally. The proper merging provides high resolution velocity models, which allow one to reliably retrieve velocity anomalies over a large part of the tomography area. The obtained images confirm the presence of a high P velocity ring in the southern part of the bay of Pozzuoli and extends its trace inland as compared to previous results. This annular anomaly represents the buried trace of the rim of the Campi Flegrei caldera. Its shape at 1.5 km depth is in good agreement with the location of hydrothermalized lava inferred by gravimetric data modelling. The Vp/Vs model confirms the presence of two characteristic features. At about 1 km depth a very high Vp/Vs anomaly is observed below the town of Pozzuoli and is interpreted as due to the presence of rocks that contain fluids in the liquid phase. A low Vp/Vs body extending at about 3–4 km depth below a large part of the caldera is interpreted as the top of formations that are enriched in gas under supercritical conditions.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2007.00687.x
2008-06-28
2024-04-23
Loading full text...

Full text loading...

References

  1. AGIP
    AGIP1987. Geologia e geofisica del sistema geotermico dei Campi Flegrei. Servizi Centrali per l'Esplorazione, SERG‐MMESG, San Donato .
  2. AkaikeH.1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control19, 716–723.
    [Google Scholar]
  3. AkiK. and LeeW.H.K.1976. Determination of three dimensional velocity anomalies under a seismic array using first P‐arrival times from local earthquakes. Journal of Geophysical Research81, 4381–4399.
    [Google Scholar]
  4. AsterR. and MeyerR.1988. Three‐dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy. Tectonophysics149, 195–218.
    [Google Scholar]
  5. BarberiF., CorradoG., InnocentiF. and LuongoG.1984. Phlegrean Fields 1982‐1984: Brief chronicle of a volcano emergency in a densely populated area. Bulletin of Volcanology47, 175–185.
    [Google Scholar]
  6. BarberiF., CassanoE., La TorreP. and SbranaA.1991. Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. Journal of Volcanology and Geothermal Research48, 33–49.
    [Google Scholar]
  7. BattagliaM., TroiseC., ObrizzoF., PingueF. and De NataleG.2006. Evidence of fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophysical Resarch Letters33, L01307. doi:DOI: 10.1029/2005GL024904.
    [Google Scholar]
  8. BenzH.M., ChouetB.A., DawsonP.B., LahrJ.C., PageR.A. and HoleJ.A.1996. Three‐dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. Journal of Geophysical Research101, 8111–8128.
    [Google Scholar]
  9. BerrinoG., CorradoG., LuongoG. and ToroB.1984. Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift. Bulletin of Volcanology47, 187–200.
    [Google Scholar]
  10. BonafedeM.1991. Hot fluid migration: an efficient source of ground deformation: application to 1982‐1984 crisis at Campi Flegrei, Italy. Journal of Volcanology and Geothermal Research48, 187–198.
    [Google Scholar]
  11. BonafedeM. and MazzantiM.1998. Modeling gravity variations consistent with ground deformation in the Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research81, 137–157.
    [Google Scholar]
  12. CapuanoP. and AchauerU.2003. Gravity field modeling in the Vesuvius and Campanian area. In: TomoVes Seismic Project: Looking Inside Mt. Vesuvius (eds A.Zollo , A.Bobbio , P.Gasparini , R.Casale and M.Yeroyanni ). Cuen, Napoli .
    [Google Scholar]
  13. ChiarabbaC. and MorettiM.2006. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova18, 373–379.
    [Google Scholar]
  14. ChiodiniG., FrondiniF., CardelliniC., GranieriD., MariniL. and VenturaG.2001. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. Journal of Geophysical Research106, 16213–16222.
    [Google Scholar]
  15. ChiodiniG., TodescoM., CaliroS., Del GaudioC., MacedonioG. and RussoM.2003. Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy). Geophysical Research Letters30, 1434. doi:DOI: 10.1029/2002GL016790.
    [Google Scholar]
  16. CrossonR.1976. Crustal structure modeling of earthquake data. 1. Simultaneous least square estimation of hypocenter and velocity parameters. Journal of Geophysical Research81, 3036–3046.
    [Google Scholar]
  17. Dello IaconoD., ZolloA., VassalloM., VanorioT. and JudenhercS.2007. Seismic image and rock properties of the very shallow structure of Campi Flegrei caldera (southern Italy). Bulletin of Volcanology, submitted.
    [Google Scholar]
  18. Di VitoM.A., LirerL., MastrolorenzoG. and RolandiG.1987. The Monte Nuovo eruption (Campi Flegrei, Italy). Bulletin of Volcanology49, 608–615.
    [Google Scholar]
  19. DvorakJ.J. and BerrinoG.1991. Recent ground movement and seismic activity in Campi Flegrei, Southern Italy: episodic growth of a resurgent dome. Journal of Geophysical Research96, 2309–2323.
    [Google Scholar]
  20. FerrucciF., HirnA., De NataleG., VirieuxJ. and MirabileL.1992. P‐SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy) ‐ Evidence for the magma chamber. Journal of Geophysical Research97, 15351–15359.
    [Google Scholar]
  21. FlorioG., FediM., CellaF. and RapollaA.1999. The Campanian Plain and Campi Flegrei: structural setting from potential field data. Journal of Volcanology and Geothermal Research91, 361–379.
    [Google Scholar]
  22. GaetaS.G., De NataleG., PelusoF., MastrolorenzoG., CastagnoloD., TroiseC., PingueF., MitaG. and RossanoS.1998. Genesis and evolution of unrest episodes at Campi Flegrei caldera: the role of thermal fluid‐dynamical processes in the geothermal system. Journal of Geophysical Research103, 20921–20933.
    [Google Scholar]
  23. GaetaF.S., PelusoF., ArienzoI., CastagnoloD., De NataleG., MilanoG., AlbaneseC. and MitaD.G.2003. A physical appraisal of a new aspect of bradyseism: The miniuplifts. Journal of Geophysical Research33, 2363. doi:DOI: 10.1029/2002JB001913.
    [Google Scholar]
  24. Gottsman, J., RymerH. and BerrinoG.2006. Unrest at the Campi Flegrei caldera (Italy): A critical evaluation of source parameters from geodetic data inversion. Journal of Volcanology and Geothermal Research150, 132–145.
    [Google Scholar]
  25. JudenhercS. and ZolloA.2004. The Bay of Naples (Southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. Journal of Geophysical Research33, B10312.
    [Google Scholar]
  26. KisslingE., EllsworthW. L., Eberhart‐PhillipsD. and KradolferU.1994. Initial reference models in local earthquake tomography. Journal of Geophysical Research99, 19635–19646.
    [Google Scholar]
  27. LatorreD., VirieuxJ., MonfretT., MonteillerV., VanorioT., GotJ.‐L. and Lyon‐CaenH.2004. A new seismic tomography of Aigion area (Gulf of Corinth‐Greece) from a 1991 dataset. Geophysical Journal International159, 1013–1031.
    [Google Scholar]
  28. Le MeurH., VirieuxJ. and PodvinP.1997. Seismic tomography of the Gulf of Corinth: A comparison of methods. Annales Geophysicae40, 1–25.
    [Google Scholar]
  29. LeeW.H.K. and LahrJ.C.1975. HYPO71 (revised): A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. US Geological Survey Open File Report 75–311.
  30. MonteillerV.2005. Tomographie ál'aide de décalages temporels d'ondes sismiques P : développements méthodologiques et applications. PhD thesis, Université de Savoie.
  31. NewhallC.G. and DzurizinD.1988. Historical unrest at large calderas of the world. US Geological Survey Bulletin33, 1108.
    [Google Scholar]
  32. OrsiG., De VitoS. and Di VitoM.1996. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration. Journal of Volcanology and Geothermal Research74, 179–214.
    [Google Scholar]
  33. OrsiG., CivettaL., DelGaudio C., De VitaS., Di VitoM.A., IsaiaR., PetrazzuoliS.M., RicciardiG.P. and RiccoC.1999. Short‐term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block‐resurgence in a densely populated area. Journal of Volcanology and Geothermal Research91, 415–451.
    [Google Scholar]
  34. PaigeC.C. and SaundersM.A.1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software8, 43–71.
    [Google Scholar]
  35. PodvinP. and LecomteI.1991. Finite difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools. Geophysical Journal International105, 271–284.
    [Google Scholar]
  36. ScandoneR., BellucciF., LirerL. and RolandiG.1991. The structure of the Campanian plain and the activity of the Napolitan volcanoes. Journal of Volcanology and Geothermal Research48, 1–31.
    [Google Scholar]
  37. SchneiderJ., AsterR., PowellL. and MeyerR.1987. Timing of portable seismographs from Omega navigational signals. Bulletin of the Seismological Society of America77, 1457–1478.
    [Google Scholar]
  38. SpakmanW. and NoletG.1988. Imaging algorithms, accuracy and resolution. In: Mathematical Geophysics M (ed. N.Vlaar ), pp. 155–187. Springer.
    [Google Scholar]
  39. TarantolaA. and ValetteB.1982. Generalized nonlinear inverse problems solved using the least‐squares criterion. Reviews of Geophysics and Space Physics20, 219–232.
    [Google Scholar]
  40. ThurberC.H.1992. Hypocenter‐velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors75, 55–62.
    [Google Scholar]
  41. TramelliA., Del PezzoE., BiancoF. and BoschiE.2006. 3D scattering image of the Campi Flegrei caldera (Southern Italy). Physics of the Earth and Planetary Interiors155, 269–280.
    [Google Scholar]
  42. TroiseC., De NataleG., PingueF., ObrizzoF., De MartinoP., TammaroU. and BoschiE.2007. Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast. Geophysical Research Letters33, L03301. doi:DOI: 10.1029/2006GL028545.
    [Google Scholar]
  43. VanorioT., VirieuxJ., CapuanoP. and RussoG.2005. Three‐dimensional seismic tomography from P wave and S wave microearthquake traveltimes and rock physics characterization of the Campi Flegrei Caldera. Journal of Geophysical Research33, B03201. doi:DOI: 10.1029/2004GL003102.
    [Google Scholar]
  44. ZolloA., JudenhercS., AugerE., D'AuriaL., VirieuxJ., CapuanoP., ChiarabbaC., De FrancoR., MakrisJ., MicheliniA. and MusacchioG.2003. Evidence for the buried rim of Campi Flegrei caldera from 3‐d active seismic imaging. Geophysical Research Letters33. doi:DOI: 10.1029/2003GL018173.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2007.00687.x
Loading
/content/journals/10.1111/j.1365-2478.2007.00687.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error