1887
Volume 56, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Least‐squares inversion of seismic reflection waveform data can reconstruct remarkably detailed models of subsurface structure and take into account essentially any physics of seismic wave propagation that can be modelled. However, the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long‐scale velocity structure. Migration velocity analysis, on the other hand, is capable of correcting substantially erroneous initial estimates of velocity at long scales. Migration velocity analysis is based on prestack depth migration, which is in turn based on linearized acoustic modelling (Born or single‐scattering approximation). Two major variants of prestack depth migration, using binning of surface data and Claerbout's survey‐sinking concept respectively, are in widespread use. Each type of prestack migration produces an image volume depending on redundant parameters and supplies a condition on the image volume, which expresses consistency between data and velocity model and is hence a basis for velocity analysis. The survey‐sinking (depth‐oriented) approach to prestack migration is less subject to kinematic artefacts than is the binning‐based (surface‐oriented) approach. Because kinematic artefacts strongly violate the consistency or semblance conditions, this observation suggests that velocity analysis based on depth‐oriented prestack migration may be more appropriate in kinematically complex areas. Appropriate choice of objective (differential semblance) turns either form of migration velocity analysis into an optimization problem, for which Newton‐like methods exhibit little tendency to stagnate at nonglobal minima. The extended modelling concept links migration velocity analysis to the apparently unrelated waveform inversion approach to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized waveform inversion problem. Extended modelling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform inversion, which may combine the global convergence of velocity analysis with the physical fidelity of model‐based data fitting.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2008.00698.x
2008-10-06
2020-03-29
Loading full text...

Full text loading...

References

  1. AlbertinU., SavaP., EtgenJ. and MaharramovM.2006. Adjoint wave equation velocity analysis. 76th SEG meeting, New Orleans , Louisiana , USA , Expanded Abstracts, TOM2.1.
  2. BackusG. and GilbertF.1968. The resolving power of gross earth data. Geophysical Journal of the Royal Astronomical Society16, 169–205.
    [Google Scholar]
  3. BackusG. and GilbertF.1970. Uniqueness in the inversion of inaccurate gross earth data. Philosophical Transactions of the Royal Society of London, Series A266, 123–192.
    [Google Scholar]
  4. BambergerA., ChaventG. and LaillyP.1977. Etude mathématique et numérique d'un problem inverse pour l'Équation des ondes a une dimension. Rapport Interne 14, Centre de Mathématiques Appliqués, École Polytechnique, Paris .
  5. BambergerA., ChaventG. and LaillyP.1979. About the stability of the inverse problem in 1‐D wave equation – application to the interpretation of seismic profiles. Applied Mathematics and Optimization5, 1–47.
    [Google Scholar]
  6. BeylkinG.1985. Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized radon transform, Journal of Mathematical Physics26, 99–108.
    [Google Scholar]
  7. BeylkinG. and BurridgeR.1990. Linearized inverse scattering problem of acoustics and elasticity. Wave Motion12, 15–22.
    [Google Scholar]
  8. BilletteF. and LambaréG.1998. Velocity macro‐model estimation from seismic reflection data by stereotomography. Geophysical Journal International135, 671–680.
    [Google Scholar]
  9. BiondiB.2003. Equivalence of source‐receiver migration and shot‐profile migration. Geophysics68, 1340–1347.
    [Google Scholar]
  10. BiondiB. and PalacharlaG.1996. 3‐D prestack migration of common‐azimuth data. Geophysics61, 1533–1543.
    [Google Scholar]
  11. BiondiB. and ShanG.2002. Prestack imaging of overturned reflections by reverse time migration. 72nd SEG meeting, Salt Lake City, Utah , USA , Expanded Abstracts, 1284–1287.
  12. BiondiB. and SymesW.2004. Angle‐domain common‐image gathers for migration velocity analysis by wavefield‐continuation imaging. Geophysics69, 1283–1298.
    [Google Scholar]
  13. BleisteinN.1987. On the imaging of reflectors in the earth. Geophysics 52, 931–942.
    [Google Scholar]
  14. Brandsberg‐DahlS., De HoopM. and UrsinB.2003. Focusing in dip and AVA compensation on scattering angle/azimuth common image gathers. Geophysics 68, 232–254.
    [Google Scholar]
  15. BrendersA. and PrattG.2006a. Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model. Geophysical Journal International, in press.
    [Google Scholar]
  16. BrendersA. and PrattG.2006b. Efficient waveform tomography for lithospheric imaging: implications for realistic, 2‐D acquisition geometries and low frequency data. Geophysical Journal International, in press.
    [Google Scholar]
  17. BubeK. and BurridgeR.1983. The one dimensional inverse problem of reflection seismology. SIAM Review25, 497–559.
    [Google Scholar]
  18. BunksC., SaleckF., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform inversion. Geophysics60, 1457–1473.
    [Google Scholar]
  19. BurridgeR., De HoopM., MillerD. and SpencerC.1998. Multiparameter inversion in anisotropic elastic media. Geophysical Journal International134, 757–777.
    [Google Scholar]
  20. CandesE. and DemanetL.2005. The curvelet representation of wave propagators is optimally sparse. Communications on Pure and Applied Mathematics58, 1472–1528.
    [Google Scholar]
  21. CaoD., SinghS. and TarantolaA.1990. Simultaneous inversion for background velocity and impedance maps. Geophysics55, 458–469.
    [Google Scholar]
  22. CarazzoneJ. and SrnkaL.1989. Elastic inversion of Gulf of Mexico data. 59th SEG meeting, Dallas , Texas , USA , Expanded Abstracts, 956–958.
  23. CelisV. and LarnerK.2002. Selective‐correlation velocity analysis. 72nd SEG meeting, Salt lake City , USA , Expanded Abstracts, 2289–2292.
  24. ChaurisH.2000. Analyse de vitesse par migration pour l'imagerie des structures complexes en sismique réflexion , PhD thesis, École des Mines de Paris.
    [Google Scholar]
  25. ChaurisH.2006. Seismic imaging in the curvelet domain and its implications for the curvelet design. 76th SEG meeting, New orleans , Louisiana , USA , Expanded Abstracts, SPMI3.2.
  26. ChaurisH. and NobleM.2001. Two‐dimensional velocity macro model estimation from seismic reflection data by local differential semblance optimization: applications synthetic and real data sets. Geophysical Journal International144, 14–26.
    [Google Scholar]
  27. ChaventG.1991. New size times curvature conditions for strict quasiconvexity of sets. SIAM Journal on Control and Optimization29, 1348–1372.
    [Google Scholar]
  28. ChaventG. and LemmonierP.1974. Identification de la non‐linéarité d'une équation parabolique quasilinéaire. Applied Mathematics and Optimization1, 121–162.
    [Google Scholar]
  29. ClaerboutJ.F.1985. Imaging the Earth's Interior . Blackwell Scientific, Oxford .
    [Google Scholar]
  30. ClaerboutJ. and DohertyS.1972. Downward continuation of moveout corrected seismograms. Geophysics37, 741–768.
    [Google Scholar]
  31. ClaerboutJ. F, 1971. Toward a unified theory of reflector mapping. Geophysics36, 467–481.
    [Google Scholar]
  32. ClémentF. and ChaventG.1993. Waveform inversion through MBTT formulation. In: Mathematical and Numerical Aspects of Wave Propagation (eds E.Kleinman , T.Angell , D.Colton , F.Santosa and I.Stakgold ). Society for Industrial and Applied Mathematics, Philadelphia .
    [Google Scholar]
  33. CraseE., PicaA., NobleM., McDonaldJ. and TarantolaA.1990. Robust elastic nonlinear waveform inversion: Application to real data. Geophysics55, 527–538.
    [Google Scholar]
  34. De HoopM. and BleisteinN.1997. Generalized Radon transform inversions for reflectivity in anisotropic elastic media. Inverse Problems16, 669–690.
    [Google Scholar]
  35. De HoopM. and StolkC.2002. Microlocal analysis of seismic inverse scattering in anisotropic, elastic media. Communications on Pure and Applied Mathematics55, 261–301.
    [Google Scholar]
  36. De HoopM. and StolkC.2005. Modeling of seismic data in the downward continuation approach. SIAM Journal on Applied Mathematics65, 1388–1406.
    [Google Scholar]
  37. De HoopM. and StolkC.2006. Seismic inverse scattering in the downward continuation approach. Wave Motion43, 579–598.
    [Google Scholar]
  38. De HoopM., Brandsberg‐DahlS. and UrsinB.2003. Seismic velocity analysis in the scattering‐angle/azimuth domain. Geophysical Prospecting51, 295–314.
    [Google Scholar]
  39. De HoopM., FossS.‐K. and UrsinB.2005. Depth‐consistent reflection tomography using PP and PS seismic data. Geophysics70, U51–U65.
    [Google Scholar]
  40. DuquetB. and LaillyP.2006. Efficient 3‐D wave‐equation migration using virtual planar sources. Geophysics71, S185–S197.
    [Google Scholar]
  41. DussaudE. and SymesW.2005. Velocity analysis from interferometric data. 75th SEG meeting, Houston, Texas , USA , Expanded Abstracts, SPVA1.1.
  42. Fernandez‐BerdaguerE.M., SantosJ.E. and SheenD.1996. An iterative procedure for estimation of variable coefficients in a hyperbolic system. Applied Mathematics and Computation76, 213–250.
    [Google Scholar]
  43. GardnerG.H.F.1985. Migration of Seismic Data , Geophysics Reprint Series No. 4. SEG, Tulsa.
    [Google Scholar]
  44. GauthierO., TarantolaA. and VirieuxJ.1986. Two‐dimensional nonlinear inversion of seismic waveforms. Geophysics51, 1387–1403.
    [Google Scholar]
  45. GockenbachM. and SymesW.1999. Coherent noise suppression in velocity inversion. 69th SEG meeting, Houston, Texas , USA , Expanded Abstracts, 1719–1723.
  46. GockenbachM.S., SymesW.W. and TapiaR.A.1995. The dual regularization approach to seismic velocity inversion. Inverse Problems11(3), 501–531.
    [Google Scholar]
  47. GoupillaudP.1961. An approach to inverse filtering of near‐surface layers from seismic records. Geophysics26, 754–760.
    [Google Scholar]
  48. GrayS. and SymesW.W.1985. Stability considerations for one‐dimensional inverse problems. Geophysical Journal of the Royal Astronomical Society80, 149–163.
    [Google Scholar]
  49. JacksonD.D.1972. Interpretation of inaccurate, insufficient, and inconsistent data. Geophysical Journal of the Royal Astronomical Society28, 97–110.
    [Google Scholar]
  50. JacksonD.D.1976. Most squares inversion. Journal of Geophysical Research81, 1027–1030.
    [Google Scholar]
  51. JacksonD.D.1979. The use of a priori data to resolve nonuniqueness in linear inversion. Geophysical Journal of the Royal Astronomical Society57, 137–157.
    [Google Scholar]
  52. JinS. and Madariga1994. Nonlinear velocity inversion by a two‐step Monte‐Carlo method. Geophysics59, 577–590.
    [Google Scholar]
  53. KernM. and SymesW.W.1994. Inversion of reflection seismograms by differential semblance analysis: Algorithm structure and synthetic examples. Geophysical Prospecting99, 565–614.
    [Google Scholar]
  54. KhouryA., SymesW.W., WilliamsonP. and ShenP.2006. DSR migration velocity analysis by differential semblance optimization. 76th SEG meeting, New Orleans , Louisiana , USA , Expanded Abstracts, SPMI3.4.
  55. KolbP., CollinoF. and LaillyP.1986. Prestack inversion of a 1D medium. Proceedings of the IEEE74, 498–506.
    [Google Scholar]
  56. LafondC.F. and LevanderA.R.1993. Migration moveout analysis and depth focusing. Geophysics58, 91–100.
    [Google Scholar]
  57. LaillyP.1983. The seismic inverse problem as a sequence of before‐stack migrations. In: Conference on Inverse Scattering: Theory and Applications (ed. J.Bednar ), pp. 206–220. Society for Industrial and Applied Mathematics, Philadelphia .
  58. LaillyP.1984. Migration methods: partial but efficient solutions to the seismic inverse problem. In: Inverse Problems of Acoustic and Elastic Waves (eds. F.Santosa ). Society for Industrial and Applied Mathematics, Philadelphia .
    [Google Scholar]
  59. LewisM.R. and SymesW.W.1991. On the relation between the velocity coefficient and boundary values for solutions of the one‐dimensional wave equation. Inverse Problems7, 597–632.
    [Google Scholar]
  60. LiJ. and SymesW.2005. Fast interval velocity estimation via nmo‐based differential semblance. 75th SEG meeting, Houston, Texas , USA , Expanded Abstracts, SPVA1.8.
  61. LiJ. and SymesW.2007. Interval velocity estimation via nmo‐based differential semblance. Geophysics72, U75–U88.
    [Google Scholar]
  62. LinesL. and TreitelS.1984. A review of least‐squares inversion and its application to geophysical problems. Geophysical Prospecting32, 159–186.
    [Google Scholar]
  63. LiuZ. and BleisteinN.1995. Migration velocity analysis: theory and an interative algorithm. Geophysics60, 142–153.
    [Google Scholar]
  64. MinkoffS.E. and SymesW.W.1997. Full waveform inversion of marine reflection data in the plane‐wave domain. Geophysics62(2), 540–553.
    [Google Scholar]
  65. MoraP.1988. Elastic wavefield inversion of reflection and transmission data. Geophysics53, 750–759.
    [Google Scholar]
  66. MosegardK. and TarantolaA.1991. Monte Carlo analysis of geophysical inverse problems. 61st SEG meeting, Houston, Texas , USA , Expanded Abstracts, 640–643.
  67. MulderW. and Ten KroodeA.2002. Automatic velocity analysis by differential semblance optimization. Geophysics67, 1184–1191.
    [Google Scholar]
  68. NeidellN. and TanerT.1971. Semblance and other coherency measures for multichannel data. Geophysics36, 498–509.
    [Google Scholar]
  69. NocedalJ. and WrightS.1999. Numerical Optimization . Springer Verlag, New York .
    [Google Scholar]
  70. NolanC. and SymesW.W.1997. Global solution of a linearized inverse problem for the wave equation. Communications on Partial Differential Equations22, 919–952.
    [Google Scholar]
  71. PaoY.‐H., SantosaF. and SymesW.W.1984. Inverse problems of acoustic and elastic waves. In: Inverse Problems of Acoustic and Elastic Waves (ed. F.Santosa ). Society for Industrial and Applied Mathematics, Philadelphia .
    [Google Scholar]
  72. ParkerR.1977. Understanding inverse theory. Annual Review of Earth and Planetary Science5, 35–64.
    [Google Scholar]
  73. PlessixR.‐E.2000. Automatic cross‐well tomography: an application of the differential semblance optimization to two real examples. Geophysical Prospecting48, 937–951.
    [Google Scholar]
  74. PlessixR.‐E.2006. A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International167, 495–503.
    [Google Scholar]
  75. PlessixR.‐E., De RoeckY.H. and ChaventG.1995. Automatic and simultaneous migration velocity analysis and waveform inversion of real data using a MBTT/WKBJ formulation. 65th SEG meeting, Houston, Texas , USA , Expanded Abstracts, 1099–1102.
  76. PlessixR.‐E., De RoeckY.‐H. and ChaventG.1999. Waveform inversion of reflection seismic data for kinematic parameters by local optimization. SIAM Journal on Scientific Computation20, 1033–1052.
    [Google Scholar]
  77. PrattR.G.1999. Seismic waveform inversion in the frequency domain, part 1: Theory, and verification in a physical scale model. Geophysics64, 888–901.
    [Google Scholar]
  78. PrattR.G. and ShippR.M.1999. Seismic waveform inversion in the frequency domain, part 2: Fault delineation in sediments using crosshole data. Geophysics64, 902–914.
    [Google Scholar]
  79. PruchaM., BiondiB. and SymesW.1999. Angle‐domain common image gathers by wave‐equation migration. 69th SEG meeting, Houston, Texas , USA , Expanded Abstracts, 824–827.
  80. Rakesh. 1988. A linearized inverse problem for the wave equation. Communications on Partial Differential Equations13, 573–601.
    [Google Scholar]
  81. Rickett, J. and Sava, P., 2002. Offset and angle‐domain common image‐point gathers for shot profile migration, Geophysics, 67, 883–889.
    [Google Scholar]
  82. RobinsonE.A. and TreitelS.1980. Geophysical Signal Analysis . Prentice‐Hall, Englewood Cliffs.
    [Google Scholar]
  83. SacksP.1988. The inverse problem for a weakly inhomogeneous two‐dimensional medium. SIAM Journal on Applied Mathematics48, 1167–1193.
    [Google Scholar]
  84. SacksP. and SantosaF.1987. A simple computational scheme for determining the sound speed of an acoustic medium from the surface values of its impulse response. SIAM Journal on Scientific and Statistical Computing3, 501–520.
    [Google Scholar]
  85. SantosaF. and SchwetlickH.1982. The inversion of acoustic impedance profile by methods of characteristics. Wave Motion4, 99–110.
    [Google Scholar]
  86. SantosaF. and SymesW.W.1989. An Analysis of Least‐Squares Velocity Inversion , vol. 4 of Geophysical Monographs. SEG, Tulsa.
    [Google Scholar]
  87. SavaP. and FomelS.2003. Angle‐domain common‐image gathers by wavefield continuation methods. Geophysics68, 1065–1074.
    [Google Scholar]
  88. SavaP. and FomelS.2005. Time‐shift imaging condition. 75th SEG meeting, Houston, Texas , USA , Expanded Abstracts, SPMI2–2.
  89. SenM.K. and StoffaP.1991a. Nonlinear one‐dimensional seismic waveform inversion using simulated annealing. Geophysics56, 1624–1636.
    [Google Scholar]
  90. SenM.K. and StoffaP.1991b. Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane wave seismograms. Geophysics56, 1794–1810.
    [Google Scholar]
  91. ShenP. and CalandraH.2005. One‐way waveform inversion within the framework of adjoint state differential migration. 75th SEG meeting, Houston, Texas , USA , Expanded Abstracts, SI3.5.
  92. ShenP., SymesW. and StolkC.2003. Differential semblance velocity analysis by wave‐equation migration. 73rd SEG meeting, Dallas, Texas , USA , Expanded Abstracts, 2135–2139.
  93. ShenP., MenyoliE. and CalandraH.2005a. Automatic sub‐salt velocity analysis: an integrated strategy of ray‐based tomography and wave‐equation migration velocity inversion. 75th SEG meeting, Houston, Texas , USA , Expanded Abstracts, SPMI6.3.
  94. ShenP., SymesW., MortonS. and CalandraH.2005b. Differential semblance velocity analysis via shot profile migration. 75th SEG meeting, Houston , Texas , USA , Expanded Abstracts, SPVA1.4.
  95. ShinC. and MinD.‐J.2006. Waveform inversion using a logarithmic wavefield. Geophysics71, R31–R42.
    [Google Scholar]
  96. SirgueL. and PrattG.2004. Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics69, 231–248.
    [Google Scholar]
  97. SoubarasR. and GratacosB.2006. Velocity model building by semblancein. 76th SEG meeting, New Orleans , Louisiana , USA , Expanded Abstracts, SVIP1.3.
  98. StolkC.2000a. On the modeling and inversion of seismic data , PhD thesis, University of Utrecht.
    [Google Scholar]
  99. StolkC.2000b. Microlocal analysis of a seismic linearized inverse problem. Wave Motion32, 267–290.
    [Google Scholar]
  100. StolkC.C. and SymesW.W.2003. Smooth objective functionals for seismic velocity inversion. Inverse Problems19, 73–89.
    [Google Scholar]
  101. StolkC.C. and SymesW.W.2004. Kinematic artifacts in prestack depth migration. Geophysics69, 562–575.
    [Google Scholar]
  102. SymesW.W.1980. Numerical stability in an inverse scattering problem. SIAM Journal on Numerical Analysis17.
    [Google Scholar]
  103. SymesW.W.1983. Impedance profile inversion via the first transport equation. Journal of Mathematical Analysis and Applications94, 435–453.
    [Google Scholar]
  104. SymesW.W.1986a. On the relation between coefficient and boundary values for solutions of webster's horn equation. SIAM Journal on Mathematical Analysis17, 1400–1420.
    [Google Scholar]
  105. SymesW.W.1986b. Stability and instability results for inverse problems in several‐dimensional wave propagation. In: Proceedings of the 7th International Conference on Computing Methods in Applied Science and Engineering (eds R.Glowinski and J.Lions ). North‐Holland .
  106. SymesW.W.1990. Velocity inversion: A case study in infinite‐dimensional optimization. Mathematical Programming48, 71–102.
    [Google Scholar]
  107. SymesW.W.1991a. Layered velocity inversion: a model problem from reflection seismology. SIAM Journal on Mathematical Analysis22, 680–716.
    [Google Scholar]
  108. SymesW.W.1991b. A differential semblance algorithm for the inverse problem of reflection seismology. Computers and Mathematics with Applications22, 147–178.
    [Google Scholar]
  109. SymesW.W.1991c. Non‐interactive estimation of the Marmousi velocity model by differential semblance optimization: Initial trials. In: The Marmousi Experience: Proceedings of the EAEG Workshop on Practical Aspects of Inversion (eds G.Grau and R.Versteeg ). IFP/Technip.
    [Google Scholar]
  110. SymesW.W.1993. A differential semblance criterion for inversion of multioffset seismic reflection data. Journal of Geophysical Research98, 2061–2073.
    [Google Scholar]
  111. SymesW.1995. Mathematical Foundations of Reflection Seismology, Technical Report. Department of Computational and Applied Mathematics, Rice University, Houston , Texas , USA . http://www.trip.caam.rice.edu.
    [Google Scholar]
  112. SymesW.W. and CarazzoneJ.1991. Velocity inversion by differential semblance optimization. Geophysics56, 654–663.
    [Google Scholar]
  113. SymesW.W. and CarazzoneJ.J.1992. Velocity inversion by coherency optimization. In: Geophysical Inversion (Ed. J.Bednar ), pp. 59–89. Society for Industrial and Applied Mathematics, Philadelphia .
    [Google Scholar]
  114. SymesW.W. and GockenbachM.1995. Waveform inversion for velocity: Where have all the minima gone?65th SEG meeting, Houston , Texas , USA , Expanded Abstracts, 1235–1239.
  115. SymesW.W. and VersteegR.1993. Velocity model determination using differential semblance optimization. 63rd SEG meeting, Washington DC , USA , Expanded Abstracts, 696–699.
  116. SymesW. W.1998. High frequency asymptotics, differential semblance, and velocity analysis. 68th SEG meeting, New Orleans , Louisiana , USA , Expanded Abstracts, 1616–1619.
  117. SymesW.W.1999. All stationary points of differential semblance are asymptotic global minimizers: layered acoustics, Technical Report 99‐29. Department of Computational and Applied Mathematics, Rice University, Houston , Texas , USA .
  118. SymesW. W.2001. Asymptotic analysis of differential semblance for layered acoustics, Technical Report 01‐21. Department of Computational and Applied Mathematics, Rice University, Houston , Texas , USA .
  119. SymesW.W.2002. Kinematics of reverse time shot‐geophone migration. The Rice Inversion Project, Department of Computational and Applied Mathematics, Rice University, Houston , Texas , USA . http://www.trip.caam.rice.edu.
    [Google Scholar]
  120. TanerM.T. and KoehlerF.1969. Velocity spectra: digital computer derivation and application of velocity functions. Geophysics34, 859–881.
    [Google Scholar]
  121. TarantolaA.1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics49, 1259–1266.
    [Google Scholar]
  122. TarantolaA.1987. Inverse Problem Theory . Elsevier.
    [Google Scholar]
  123. TarantolaA., CraseE., JervisM., KonenZ., LindgrenJ., MosegardK. and NobleM.1990. Nonlinear inversion of seismograms: State of the art. 60th SEG meeting, San Francisco , California , USA , Expanded Abstracts, S13.7.
  124. TaylorM.1981. Pseudodifferential Operators . Princeton University Press, Princeton , NJ .
    [Google Scholar]
  125. Ten KroodeA.P.E., SmitD.J. and VerdelA.R.1998. A microlocal analysis of migration. Wave Motion28, 149–172.
    [Google Scholar]
  126. ToldiJ.1989. Velocity analysis without picking. Geophysics54, 191–199.
    [Google Scholar]
  127. TreitelS., GutowskiP.R. and WagnerD.E.1982. Plane‐wave decomposition of seismograms. Geophysics47, 1375–1401.
    [Google Scholar]
  128. VermR. and SymesW.2006. Practice and pitfalls in NMO‐based differential semblance velocity analysis. 76th SEG meeting, New orleans , Louisiana , USA , Expanded Abstracts, SI3.7.
  129. XuS., ChaurisH., LambaréG. and NobleM.2001. Common angle migration: A strategy for imaging complex media. Geophysics66(6), 1877–1894.
    [Google Scholar]
  130. YilmazO.2001. Seismic Data Processing. SEG, Tulsa.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2008.00698.x
Loading
/content/journals/10.1111/j.1365-2478.2008.00698.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error