1887
Volume 56, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Anisotropy is often observed due to the thin layering or aligned micro‐structures, like small fractures. At the scale of cross‐well tomography, the anisotropic effects cannot be neglected. In this paper, we propose a method of full‐wave inversion for transversely isotropic media and we test its robustness against structured noisy data.

Optimization inversion techniques based on a least‐square formalism are used. In this framework, analytical expressions of the misfit function gradient, based on the adjoint technique in the time domain, allow one to solve the inverse problem with a high number of parameters and for a completely heterogeneous medium.

The wave propagation equation for transversely isotropic media with vertical symmetry axis is solved using the finite difference method on the cylindrical system of coordinates. This system allows one to model the 3D propagation in a 2D medium with a revolution symmetry. In case of approximately horizontal layering, this approximation is sufficient.

The full‐wave inversion method is applied to a crosswell synthetic 2‐component (radial and vertical) dataset generated using a 2D model with three different anisotropic regions. Complex noise has been added to these synthetic observed data. This noise is Gaussian and has the same amplitude spectrum as the data. Part of the noise is localized as a coda of arrivals, the other part is not localized. Five parameter fields are estimated, (vertical) ‐wave velocity, (vertical) ‐wave velocity, volumetric mass and the Thomsen anisotropic parameters epsilon and delta. Horizontal exponential correlations have been used. The results show that the full‐wave inversion of cross‐well data is relatively robust for high‐level noise even for second‐order parameters such as Thomsen epsilon and delta anisotropic parameters.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2008.00702.x
2008-10-06
2020-04-05
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.1980. Quantitative Seismology . Freeman.
    [Google Scholar]
  2. BackusG.1962. Long‐wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research67, 4427–4440.
    [Google Scholar]
  3. CarcioneJ., KosloffD. and KosloffR.1988. Wave propagation simulation in an elastic anisotropic (transversely isotropic) solid. Quarterly Journal of Mechanics and Applied Mathematics41, 319–345.
    [Google Scholar]
  4. ChararaM.1996. Tomographie d'un milieu visco‐élastique par ajustement de la forme d'onde . PhD thesis, Université de Paris VII .
    [Google Scholar]
  5. ChararaM., BarnesC. and TarantolaA.1996. Constrained seismic well data waveform inversion. In: Inverse Methods: Interdisciplinary Elements of Methodology, Ccomputation and Application (ed. J.M.Sibani ), pp. 98–112. Springer‐Verlag. ISBN 3540616934.
    [Google Scholar]
  6. CraseE.1989. Robust elastic nonlinear inversion of seismic waveform data . PhD thesis, University of Houston .
    [Google Scholar]
  7. FindlayM., GoultyN. and KraghJ.1991. The crosshole seismic reflection method in opencast coal exploration. First Break9, 509–514.
    [Google Scholar]
  8. HarrisJ., Nolen‐HoeksemaR., LanganR., Van SchaackM., LazaratosS. and RectorJ.1995. High‐resolution crosswell imaging of a west texas carbonate reservoir: Part 1: Project summary and interpretation. Geophysics60, 667–681.
    [Google Scholar]
  9. IgelH.1993. Seismic modeling and inversion . PhD thesis, University of Paris VII .
    [Google Scholar]
  10. LazaratosS., HarrisJ., RectorJ. and van Schaack. 1995. High‐resolution crosswell imaging of a west texas carbonate reservoir. Part 4: Reflection imaging. Geophysics60, 702–711.
    [Google Scholar]
  11. LionsJ. L.1968. Contrôle optimal des système gouvernés par des équations aux dérivées partielles . Dunod. (In English: LionsJ. L. 1971. Optimal Control of Systems Governed by Partial Ddifferential Equations . Springer)
    [Google Scholar]
  12. MillerD., OristaglioM. and BeylkinG.1987. A new slant on seismic imaging ‐ migration and integral geometry. Geophysics52, 943–964.
    [Google Scholar]
  13. NishitakeT. and MiyoshiY.1968. Elastic wave velocities in anisotropic sedimentary rocks. Bulletin of the Disaster Prevention Research Institute.
    [Google Scholar]
  14. PolackE. and RibièreG.1969. Note sur la convergence de méthodes de directions conjuguées. Revue Française d'Informatique et de Recherche Opérationnelle16‐R1, 35–43.
    [Google Scholar]
  15. PrattR.1999. Seismic waveform inversion in the frequency domain, part 1: Theory and verification in a physical scale model. Geophysics64, 888–901.
    [Google Scholar]
  16. PrattR. and GoultyN.1991. Combining wave‐equation imaging with traveltime tomography to form high‐resolution images from crosshole data. Geophysics56, 208–224.
    [Google Scholar]
  17. PrattR. and SamsM.S.1996. Reconciliation of crosshole seismic velocities with well information in a layered sedimentary environment. Geophysics61, 549–560.
    [Google Scholar]
  18. PrattR.G. and ShippR.M.1999. Seismic waveform inversion in the frequency domain, part 2: Fault delineation in sediments using crosshole data. Geophysics64, 902–914.
    [Google Scholar]
  19. RectorJ. and WashbourneJ.1994. Characterization of resolution and uniqueness in crosswell direct arrival traveltime tomography using the fourier projection slice theorem. Geophysics59, 1642–1649.
    [Google Scholar]
  20. RowbothamP. and GoultyN.1995. Quantitative evaluation of crosshole seismic reflection images using physical model data. Geophysical Prospecting43, 529–540.
    [Google Scholar]
  21. SchusterG.1996. Resolution limits for crosswellmigration and traveltime tomography. Geophysical Journal International127, 427–440.
    [Google Scholar]
  22. SongZ.‐M., WilliamsonP. and PrattR.1995. Frequency‐domain acoustic‐wave modeling and inversion of crosshole data: Part II: Inversion method, synthetic experiments and real‐data results. Geophysics60, 796–809.
    [Google Scholar]
  23. TarantolaA.1986. A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics51, 1893–1903.
    [Google Scholar]
  24. TarantolaA.1987. Inverse Problem Theory: Methods for Data Ffitting and Model Parameter Estimation . Elsevier. ISBN 0444427651.
    [Google Scholar]
  25. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  26. WilliamsonP.1991. A guide to the limits of resolution imposed by scattering in ray tomography. Geophysics56, 202–207.
    [Google Scholar]
  27. WilliamsonP. and WorthingtonM.1993. Resolution limits in ray tomography due to wave behavior: Numerical experiments. Geophysics58, 727–735.
    [Google Scholar]
  28. WuR. and ToksözM.1987. Diffraction tomography and multisource holography applied to seismic imaging. Geophysics52, 11–25.
    [Google Scholar]
  29. ZhouC., CaiW., LuoY., SchusterG. and HassanzadehS.1993. High‐resolution cross‐well imaging by seismic traveltime + waveform inversion. The Leading Edge12, 988–991.
    [Google Scholar]
  30. ZhuX. and McMechanG.1988. Acoustic modeling and migration of stacked cross‐hole data. Geophysics53, 492–500.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2008.00702.x
Loading
/content/journals/10.1111/j.1365-2478.2008.00702.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error