1887
Volume 56, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Wavelet decomposition of the slowness model allows a multiscale description of the seismic first‐arrival time tomography. We propose the introduction of the so‐called second generation wavelets that could be used for any mesh structure and do not require a number of samples, such as the power of two in each direction for fast wavelet transform. A linearized procedure for inverting delayed travel‐times considering either slowness coefficients or wavelet coefficients has been set up with an efficient ray tracing at each iteration of the inversion procedure. Wavelet decomposition over constant patches (Haar wavelet) or over linear patches (Battle‐Lemarie wavelet) of coefficients at different scales are inverted as unknowns of the tomographic linearized system. Reconstruction of these coefficients depends dynamically on the local resolution when considering dense ray coverage. On simple synthetic examples, it has been found necessary to perform a local resolution analysis for specifying wavelet coefficients to be inverted. This resolution analysis could be performed for an initial smooth reconstructed medium and by designing a bit mask operator it allows fine scales to be inverted in specific areas of the model where the resolution is high while not being inverted in other areas where the resolution is poor: the wavelet decomposition will ease the multiscale reconstruction. A few synthetic examples, such as crosshole tomography or surface‐surface tomography illustrate the multiscale feature of wavelet tomography. The second generation wavelet approach seems to be a flexible and rather promising tool for controlling the resolution variation of seismic first‐arrival tomography.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2008.00710.x
2008-06-28
2024-03-28
Loading full text...

Full text loading...

References

  1. AkiK. and LeeW.1976. Determination of three‐dimentional velocity anomalies under a seismic array using first P‐arrival times from local earthquakes. Journal of Geophysical Research81, 4,381–4,399.
    [Google Scholar]
  2. BenzH.M., ChouetS.A., DawsonP.B., LahrJ.C., PageR.A. and HoleJ.A.1996. Three‐dimentional P and S wave velocity structure of Redoubt Volcano, Alaska. Journal of Geophysical Research101, 8111–8128.
    [Google Scholar]
  3. BöhmG. and VesnaverA.1999. In quest of the grid. Geophysics64, 1116–1125.
    [Google Scholar]
  4. BöhmG., GaluppoP. and VesnaverA.2000. 3D adaptative tomography using delauney triangles and voronoı polygons. Geophysical Prospecting48, 723–744.
    [Google Scholar]
  5. BourgeoisA., BourgetM., LaillyP., PouletM., RicarteP. and VersteegR.1991a. Marmousi, model and data. Proceedings of the EAEG Workshop on Practical Aspects of Seismic Data Inversion , pp. 5–16. EAEG.
  6. BourgeoisA., BourgetM., LaillyP., PouletM., RicarteP. and VersteegR.1991b. Marmousi, model and data marmousi, model and data, the marmousi experience. Proceedings of the EAEG Workshop on Practical Aspects of Seismic Data Inversion . EAEG.
  7. ChiaoL.‐Y. and KuoB.‐Y.2001a. Multiscale seismic tomography. Geophysical Journal International145, 517–527.
    [Google Scholar]
  8. ChiaoL.‐Y. and KuoB.‐Y.2001b. Multiscale seismic tomography. Geophysical Journal International145, 517–527.
    [Google Scholar]
  9. ChiaoL.‐Y. and LiangW.‐T.2003. Multiresolution parametrization for geophysical inverse problems. Geophysics68, 199–209.
    [Google Scholar]
  10. CohenA., DaubechiesI. and FeauveauJ.1992. Biorthogonal basis of compactly supported wavelets. Communications on Pure and Applied Mathematics45, 485–560.
    [Google Scholar]
  11. DahlenF.A.2004. Resolution limit of traveltime tomography. Geophysical Journal International157, 315–331.
    [Google Scholar]
  12. DaubechiesI.1988. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics41, 909–996.
    [Google Scholar]
  13. DaubechiesI., GrossmannA. and MeyerY.1986. Painless nonorthogonal expansions. Journal of Mathematical Physics27, 1271–1283.
    [Google Scholar]
  14. Delprat‐JannaudF. and LaillyP.1993. Ill posed and well posed formulation of the reflection traveltime tomography problem. Journal of Geophysical Research98, 6589–6605.
    [Google Scholar]
  15. FarraV. and MadariagaR.1988. Non‐linear reflection tomography. Geophysical Journal95, 135–147.
    [Google Scholar]
  16. GrossmannA. and MorletJ.1984. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis15, 723–736.
    [Google Scholar]
  17. HoleJ. A.1992. Nonlinear high‐resolution three‐dimentional seismic travel time tomography. Journal of Geophysical Research97, 6553–6562.
    [Google Scholar]
  18. KisslingE., EllsworthW.L., Eberhart‐PhillipsD. and KradolferU.1994. Initial reference models in local earthquake tomography. Journal of Geophysical Research99, 19,635–19,646.
    [Google Scholar]
  19. LatorreD., VirieuxJ., MonfretT., MonteillerV., VanorioT., GotJ.L., and Lyon‐CaenH.2004. A new seismic tomography of Aigion area (Gulf of Corinth, Greece) from the 1991 data set. Geophysical Journal International159, 1013–1031.
    [Google Scholar]
  20. MadychW.R.1999. Tomography, approximate reconstruction, and continuous wavelet transforms. Applied and Computational Harmonic Analysis7, 54–100.
    [Google Scholar]
  21. MallatS.1989a. Multifrequency approximations and wavelet orthonormal bases of l 2(r). Transactions of the American Mathematical Society315, 69–87.
    [Google Scholar]
  22. MallatS.1989b. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing37, 2091–2110.
    [Google Scholar]
  23. MallatS.1999. A Wavelet Tour of Signal Processing . Academic Press.
    [Google Scholar]
  24. MenkeW.1984. Geophysical Data Analysis: Discrete Inverse Theory . Academic Press.
    [Google Scholar]
  25. MeyerY.1999. Ondelettes et opérateurs, i:ondelettes, ii:opérateurs de calderon‐zygmund, iii:(with r. coifman), opérateurs multilinéaires . Academic Press.
    [Google Scholar]
  26. MicheliniA.1995. An adaptative‐grid formalism for traveltime tomography. Geophysical Journal International121, 489–510.
    [Google Scholar]
  27. MintzerF.1985. Filter for distorsion‐free multirate filter banks. IEEE Transactions on Acoustics, Speech, and Signal Processing33, 626–630.
    [Google Scholar]
  28. MonteillerV., GotJ.‐L., VirieuxJ. and OkuboP.2005. An efficient algorithm for double‐difference tomography and location in heterogeneous media, with an application to kilauea volcano. Journal of Geophysical Research110, B12306. doi:DOI: 10.1029/2004JB003466.
    [Google Scholar]
  29. MontelliR., NoletG., DahlenF.A., MastersG., EngdahlE.R. and HungS. H.2004. Finite‐frequency tomography reveals a variety of plumes in the mantle. Science303, 338–343.
    [Google Scholar]
  30. NguyenT.Q. and VaidyannathanP.P.1989. Two‐channnel perfect reconstruction fir qmf structures which yield linear phase analysis ans synthesis filters. IEEE Transcations on Acoustics, Speech, and Signal Processing37, 676–690.
    [Google Scholar]
  31. NoletG., MontelliR. and VireuxJ.1999. Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems. Geophysical Journal International138, 36–44.
    [Google Scholar]
  32. OpertoS., RavautC., ImprotaL., VirieuxJ., HerreroA. and Dell'AversanaP.2004. Quantitative imaging of complex structures from multi‐fold wide aperture seismic data. Geophysical Prospecting52, 625–651.
    [Google Scholar]
  33. PaigeC.C. and SaundersM.A.1982. ALGORITHM 583 LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software8, 195–209.
    [Google Scholar]
  34. PodvinP. and LecomteI.1991. Finite difference computation of traveltimes in very contrasted velocity model: a massively parallel approach and its associated tools. Geophysical Journal International105, 271–284.
    [Google Scholar]
  35. PrattR.G., ShinC. and HicksG.J.1998. Gauss‐newton and full newton methods in frequency‐space seismic waveform inversion. Geophysical Journal International133, 341–362.
    [Google Scholar]
  36. SpakmanW. and BijwaardH.1998. Irregular cell parametrization of tomographic problems. Annales Geophysicae16, 28.
    [Google Scholar]
  37. SpakmanW. and NoletG.1988. Imaging algorithms, accuracy and resolution. In: Mathematical Geophysics (ed. N.Vlaar ), pp. 155–187. D Reidel, Dordrecht .
    [Google Scholar]
  38. SpakmanW., BijwaardH. and EngdahlE.R.1998. Closing the gap between regional and global travel time tomography. Journal of Geophysical Research103, 30055–30078.
    [Google Scholar]
  39. SweldensW.1994. The lifting scheme, a custom design construction of biorthogonal wavelets. Technical Report 1994:7, University of South Carolina .
    [Google Scholar]
  40. SweldensW.1997. The lifting scheme, a construction of second generation wavelets. SIAM Journal on Mathematical Analysis29, 511–546.
    [Google Scholar]
  41. SweldensW. and SchroderP.1995. Buidling your own wavelets at home. Technical Report 1995:5, University of South Carolina .
  42. TarantolaA.1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation . Elsevier.
    [Google Scholar]
  43. TarantolaA. and ValetteB.1982. Generalized nonlinear inverse problems solved using the least square criterion. Reviews of Geophysics and Space Physics20, 219–232.
    [Google Scholar]
  44. TikhonovA. and ArseninV.1977. Solution of Ill‐posed Problems . Winston, Washington DC .
    [Google Scholar]
  45. TrinksI., SinghS.C., ChapmanC.H., BartonP.J., BoschM. and CherrettA.2005. Adaptative traveltime tomography of densely sampled seismic data. Geophysical Journal International160, 925–938.
    [Google Scholar]
  46. VaidyannathanP.P.1993. Theory an design of m‐channel maximally decimated quadrature mirror filters with arbitrary m, having perfect reconstruction property. SIAM Journal on Mathematical Analysis30, 141–162.
    [Google Scholar]
  47. VersteegR.1994. The marmousi experience: Velocity model determination on a synthetic complex data set. The Leading Edge13, 927–936.
    [Google Scholar]
  48. VesnaverA.1994. Towards the uniqueness of tomographic inversion solutions. Journal of Seismic Exploration3, 323–334.
    [Google Scholar]
  49. VesnaverA.1996. Irregular grids in seismic tomography and minimum time ray tracing. Geophysical Journal International125, 147–165.
    [Google Scholar]
  50. VetterliM.1986. Filter banks allowing prefect reconstruction. Signal Processing10, 219–244.
    [Google Scholar]
  51. VetterliM. and HerleyC.1989. Wavelet and filter banks: theory and design. IEEE Transactions on Acoustics, Speech, and Signal Processing37, 1057–1071.
    [Google Scholar]
  52. WesselingP.2002. An Introduction to Multigrid Methods . John Wiley.
    [Google Scholar]
  53. WoodsJ.W. and O'neilS.D.1986. Subband coding of images. IEEE Transactions on Acoustics, Speech, and Signal Processing34, 1278–1288.
    [Google Scholar]
  54. ZeltC. and SmithR. B.1992. Seismic traveltime inversion for 2‐D crustal velocity structure. Geophysical Journal International108, 16–34.
    [Google Scholar]
  55. ZhangH. and ThurberC.2005. Adaptative mesh seismic tomography based on tetrahedral and voronoi diagrams: application to parkfield, california. Journal of Geophysical Research110, B04303. doi:DOI: 10.1029/2004JB003186.
    [Google Scholar]
  56. ZhangJ., Ten BrinkU.S. and ToksözM.N.1998. Nonlinear refraction and reflection travel time tomography. Journal of Geophysical Research103, 29743–29757.
    [Google Scholar]
  57. ZhouH.2003. Multiscale traveltime tomography. Geophysics68, 1639–1649.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2008.00710.x
Loading
/content/journals/10.1111/j.1365-2478.2008.00710.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error