1887
Volume 56, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The availability of reliable constitutive models linking the bulk electric properties of porous media to their inner structure is a key requirement for useful quantitative applications of noninvasive methods. This study focuses on the use of dielectric measurements to monitor fluid saturation changes in porous materials. A number of empirical, semi‐empirical and theoretical relationships currently exists that link the bulk dielectric constant with volumetric water content. One such relationship, named complex refractive index model or Lichteneker‐Rother model has been extensively applied in recent years. Here we first analyse the characteristics of this Lichteneker‐Rother model by means of theoretical considerations. This theoretical analysis indicates that the Lichteneker‐Rother exponent is dependent upon the geometrical properties of the porous structure, as well as the permittivity contrast between the different phases. Pore‐scale modelling and experimental data further support this result. The parameter estimation robustness in presence of synthetic data error is also assessed. This demonstrates that Lichteneker‐Rother parameters cannot, in general, be independently identified on the basis of bulk dielectric constant versus moisture content data.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2008.00724.x
2008-07-08
2020-03-29
Loading full text...

Full text loading...

References

  1. Ajo‐FranklinJ.B., GellerJ.T. and HarrisJ.M.2004. The dielectric properties of granular media saturated with DNAPL/water mixtures. Geophysical Research Letters31, L17501.
    [Google Scholar]
  2. AnsoultM.L., De BakerW. and DeclercqM.1985. Statistical relationship between apparent dielectric constant and water content in porous media. Soil Science Society of America Journal49, 47–50.
    [Google Scholar]
  3. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions American Institute Mining Metallurgical and Petroleum Engineers146, 54–62.
    [Google Scholar]
  4. BergmanD.J.1978. The dielectric constant of a composite material. A problem in classical physics. Physics Reports (section C of Physics Letter)43, 377–407.
    [Google Scholar]
  5. BerrymanJ.G.1992. Effective stress for transport properties of inhomogeneous porous rocks. Journal of Geophysical Research97, 17409–17424.
    [Google Scholar]
  6. BinleyA., CassianiG., MiddletonR. and WinshipP.2002. Vadose zone model parameterisation using cross‐borehole radar and resistivity imaging. Journal of Hydrology267, 147–159.
    [Google Scholar]
  7. BinleyA., WinshipP., MiddletonR., PokarM. and WestJ.2001. High resolution characterization of vadose zone dynamics using cross‐borehole radar. Water Resources Research37, 2639–2652.
    [Google Scholar]
  8. BirchakJ.R., GardnerC.G., HippJ.E. and VictorJ.M.1974. High dielectric constant microwave probes for sensing soil moisture. Proceedings of the IEEE62, 93–98.
    [Google Scholar]
  9. BrovelliA., CassianiG., DallaE., BergaminiF. and PiteaD.2005. Electrical properties of partially saturated sandstones: Novel computational approach with hydrogeophysical applications. Water Resources Research41, W08411. doi:DOI: 10.1029/2004WR003628.
    [Google Scholar]
  10. ButlerD.K.2005. Near‐Surface Geophysics. Investigations in Geophysics13. SEG.
    [Google Scholar]
  11. CassianiG., BohmG., VesnaverA. and NicolichR.1998. A Geostatistical framework for incorporating seismic tomography auxiliary data into hydraulic conductivity. Journal of Hydrology206, 58–74.
    [Google Scholar]
  12. CassianiG., BurberyL.F. and GiustinianiM.2005. A note on in situ estimates of sorption using push‐pull tests. Water Resources Research41, W03005. doi:DOI: 10.1029/2004WR003382.
    [Google Scholar]
  13. ChanC.Y. and KnightR.1999. Determining water content and of saturation from dielectric measurements in layered materials. Water Resources Research35, 85–93.
    [Google Scholar]
  14. ChelidzeT.L. and GuéguenY.1999a. Electrical spectroscopy of porous rocks: A review. I. Theoretical models. Geophysical Journal International137, 1–15.
    [Google Scholar]
  15. ChelidzeT.L., GuéguenY. and RuffetC.1999b. Electrical spectroscopy of porous rocks: A review. II. Experimental results and interpretation. Geophysical Journal International137, 16–34.
    [Google Scholar]
  16. DallaE., CassianiG., BrovelliA. and PiteaD.2004. Electrical conductivity of unsaturated porous media: Pore‐scale model and comparison with laboratory data. Geophysical Research Letters31, L05609. doi:DOI: 10.1029/2003GL019170.
    [Google Scholar]
  17. De LoorG.P.1990. The dielectric properties of wet soils. BCRS Report No. 90‐13 Proj. No. AO‐2.1. The Netherlands Remote Sensing Board, Delft , The Netherlands .
  18. DobsonM.C., UlabyF.T., HallikainenM.T. and El‐RayesM.A.1985. Microwave dielectric behaviour of wet soils, II Dielectric mixing models. IEEE Transactions on Geoscience and Remote SensingGE‐23, 35–46.
    [Google Scholar]
  19. DraperN.R. and SmithH.1998. Applied Regression Analysis , 3rd edn. John Wiley.
    [Google Scholar]
  20. FriedmanS.P.1997. Statistical mixing model for the apparent dielectric constant of unsaturated porous media. Soil Science Society of America Journal61, 742–745.
    [Google Scholar]
  21. FriedmanS.P. and RobinsonD.A.2002. Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated media. Water Resources Research38, 1236. doi:DOI: 10.1029/2001WR000746.
    [Google Scholar]
  22. GloguenE., ChouteauM., MarcotteD. and ChapuisR.2001. Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data. Journal of Applied Geophysics47, 135–152.
    [Google Scholar]
  23. GloverP.W.J., HoleM.J. and PousJ.2000. A modified Archie's law for two conducting phases. Earth and Planetary Science and Letters180, 369–383.
    [Google Scholar]
  24. GuéguenY. and PalciauskasV.1994. Introduction to the Physics of Rocks . Princeton University Press.
    [Google Scholar]
  25. HashinZ. and ShtrikmanS.1962. A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics33, 3125–3131.
    [Google Scholar]
  26. HeimovaaraT.J., BoutenW. and VerstratenJ.M.1994. Frequency domain analysis of time‐domain reflectometry waveforms. 2. A four component complex dielectric mixing model for soils. Water Resources Research30, 201–209.
    [Google Scholar]
  27. JacobsenO.H. and SchjonningP.1995. Comparison of time‐domain reflectometry calibration function for soil water determination. Proceedings of the Symposium: Time‐Domain Reflectometry Applications in Soil Science , pp. 25–33.
  28. JonesS.B. and FriedmanS.P.2000. Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles. Water Resources Research36, 2821–2833.
    [Google Scholar]
  29. LagariasJ.C., ReedsJ.A., WrightM.H. and WrightP.E.1998. Convergence properties of the Nelder‐Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization9, 112–147.
    [Google Scholar]
  30. MartinezA. and ByrnesA.P.2001. Modeling dielectric‐constant values of geologic materials: An aid to ground penetrating radar data collection and interpretation. Current Research in Earth Sciences247.
    [Google Scholar]
  31. MaxwellJ.C.1891. A Treatise on Eelectricity and Magnetism . Dover Publishing. Inc., New York
    [Google Scholar]
  32. PerssonM. and BerndtssonR.2002. Measuring nonaqueous phase liquid saturation in sil using time‐domain reflectometry. Water Resources Research38, 1064. doi:DOI: 10.1029/2001WR000523.
    [Google Scholar]
  33. PrideS.1994. Governing equation for the coupled electromagnetics and acoustics of porous media. Physical Review B50, 15678–15696.
    [Google Scholar]
  34. RevilA. and CathlesIIIL.M.1999. Permeability of shaly sands. Water Resources Research35, 651–662.
    [Google Scholar]
  35. RevilA. and GloverP.W.J.1998. Nature of surface electrical conductivity in natural sands, sandstones and clays. Geophysical Research Letters25, 691–694.
    [Google Scholar]
  36. RobinsonD.A. and FriedmanS.P.2001. Effect of particle size distribution on the effective dielectric permittivity of saturated granular media. Water Resources Research37, 33–40.
    [Google Scholar]
  37. RobinsonD.A. and FriedmanS.P.2003. A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments and granular materials. Journal of Geophysical Research108, 2076. doi:DOI: 10.1029/2001JB000691.
    [Google Scholar]
  38. RobinsonD.A., GardnerC.M.K. and CooperJ.D.1999. Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: Comparison, including the effects of bulk soil electrical conductivity. Journal of Hydrology223, 198–211.
    [Google Scholar]
  39. RothK., SchulinR., FluherH. and AttingerW.1990. Calibration of time‐domain reflectometry for water content measurement using a composite dielectric approach. Water Resources Research26, 2267–2273.
    [Google Scholar]
  40. RubinY. and HubbardS.S.2005. Hydrogeophysics . Springer.
    [Google Scholar]
  41. SenP.N., ScalaC. and CohenM.H.1981. A self‐similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics46, 781–795.
    [Google Scholar]
  42. SihvolaA. and KongJ.A.1988. Effective permittivity of dielectric mixtures. IEEE Transactions on Geoscience and Remote Sensing26, 420–429.
    [Google Scholar]
  43. SihvolaA. and KongJ.A.1989. Correction to ‘Effective permittivity of dielectric mixtures’. IEEE Transactions on Geoscience and Remote Sensing21, 101–102.
    [Google Scholar]
  44. ToppG., DavisJ. and AnnanA.1980. Electromagnetic determination of soil water content: Measurement in coaxial transmission lines. Water Resources Research16, 574–582.
    [Google Scholar]
  45. VereeckenH., BinleyA.M., CassianiG., RevilA. and TitovK.2006. Applied Hydrogeophysics . Springer.
    [Google Scholar]
  46. VereeckenH., KemnaA., MünchH.‐M., TillmannA. and VerweerdA.2005. Aquifer characterization by geophysical methods. In: Encyclopedia of Hydrological Sciences (ed. M.G.Anderson ), pp. 2265–2283. John Wiley and Sons.
    [Google Scholar]
  47. VereeckenH., YaramanciU. and KemnaA.2002. Noninvasive methods in hydrology. Journal of Hydrology267.
    [Google Scholar]
  48. WagnerK.W.1924. Erklarung der Dielectrishen Nachwirkungsvorgange auf grund Maxwellscher vorstellungen. Archiv Electrotechnik2, 371–387.
    [Google Scholar]
  49. WestL.J., HandleyK., HuangY. and PokarM.2003. Radar frequency dielectric dispersion in sand and sandstone: Implications for determination of moisture content and clay content. Water Resources Research39, 1026. doi:DOI: 10.1029/2001WR000923.
    [Google Scholar]
  50. WhartonR.P., HazenG.A., RauR.N. and BestD.L.1980. Electromagnetic propagation logging: Advances in technique and interpretation. SPE paper, No. 9267.
  51. WoodsideW. and MessmerJ.H.1961. Thermal conductivity of porous media. I. Unconsolidated sands. Journal of Applied Physics32, 1688–1699.
    [Google Scholar]
  52. WyllieM.R.J., GregoryA.R. and GardnerL.W.1956. Elastic wave velocities in heterogeneous and porous media. Geophysics21, 41–70.
    [Google Scholar]
  53. ZakriT., LaurentJ.‐P. and VauclinM.1998. Theoretical evidence for ‘Lichtenecker's mixture formulae’ based on effective medium theory. Journal of Physics D: Applied Physics31, 1589–1594.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2008.00724.x
Loading
/content/journals/10.1111/j.1365-2478.2008.00724.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error