1887
Volume 57, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We consider the use of the continuous wavelet transform in the interpretation of potential field data. We report its development since the publication of the first paper by Moreau. in 1997. Basically, it consists in the interpretation in the upward continued domain since dilation of the wavelet transform is the upward continuation altitude. Thus within a range of altitudes, the wavelet transform of the noise is decreased faster than the wavelet transform of the potential field caused by underground sources; this means that the signal‐to‐noise ratio is much better than those involved in other enhancing methods (e.g., Euler deconvolution, gradient analysis, or the analytic signals). Similarly to the Euler deconvolution, its first target parameters were the source positions and shape. The method has then been developed to estimate size and directions of extended sources (e.g., faults and dikes of finite dimensions) and also the magnetization direction in the case of magnetic data. Latest developments show that when combined with a Radon transform, the continuous wavelet transform can help in the automatic detection of elongated structures in 3D, simultaneously to the estimation of their strike direction, shape and depth. Several applications to real case studies have been shown before; however for clarity's sake in the present paper, only synthetic cases have been reproduced to clearly sum up the development of the methodology.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2009.00794.x
2009-05-12
2020-04-06
Loading full text...

Full text loading...

References

  1. AgarwalR.G. and KanasewichE.R.1971. Automatic trend analysis and interpretation of potential‐field data. Geophysics36, 339–348.
    [Google Scholar]
  2. ArneodoA., ArgoulF., BacryE., ElezgarayJ. and MuzyJ.‐F.1995. Ondelettes, multifractales et turbulences, de l’AND aux croissances cristallines . Diderot Editeur, Paris . ISBN 2841340244. (in French)
    [Google Scholar]
  3. AusterH.U., FornaconK.H., GeorgescuE., GlassmeierK.H. and MotschmannU.2002. Calibration of flux‐gate magnetometers using relative motions. Measurement Science and Technology13, 1124–1134.
    [Google Scholar]
  4. BoschettiF., TherondV. and HornbyP.2004. Feature removal and isolation in potential field data. Geophysical Journal International159, 833–841.
    [Google Scholar]
  5. BoukerboutH.2004. Analyse en ondelettes et prolongement des champs de potentiel. Développement d’une théorie 3‐D et application en géophysique . PhD thesis, Rennes University I, France . (in French)
  6. BoukerboutH. and GibertD.2006. Identification of sources of potential fields with the continuous wavelet transform: Two‐dimensional ridgelet analysis. Journal of Geophysical Research111, B07104.
    [Google Scholar]
  7. BoukerboutH., GibertD. and SailhacP.2003. Identification of sources of potential fields with the continuous wavelet transform. Application to VLF data. Geophysical Research Letters30, 1427.
    [Google Scholar]
  8. BrauerP., MerayoJ.M.G., RisboT. and PrimdahlF.2002. Magnetic calibration of vector magnetometers: linearity, thermal effects and stability. In: Ground and In‐flight Space Magnetometer Calibration Techniques (eds A.Balogh and F.Primdhal ), ESA SP‐490.
    [Google Scholar]
  9. DannemillerN. and LiY.2006. A new method for determination of magnetization direction. Geophysics71, L69–L73. doi:DOI: 10.1190/1.2356116
    [Google Scholar]
  10. DarnetM., SailhacP. and MarquisG.2004. Geophysical investigation of antique iron furnaces: insights from modelling magnetic and VLF data. Near Surface Geophysics2, 95–101.
    [Google Scholar]
  11. FediM. and QuartaT.1998. Wavelet analysis for the regional‐residual and local separation of potential field anomalies. Geophysical Prospecting46, 507–525.
    [Google Scholar]
  12. FediM. and RapollaA.1999. 3‐D inversion of gravity and magnetic data with depth resolution. Geophysics64, 452–461.
    [Google Scholar]
  13. GerovskaD. and Araúzo‐BravoM.2006. Calculation of magnitude magnetic transforms with high centricity and low dependence on the magnetization vector direction. Geophysics71, I21–I30. doi:DOI: 10.1190/1.2335516
    [Google Scholar]
  14. HoldenD.J., ArchibaldN.J., BoschettiF. and JessellM.W.2000. Inferring geological structures using wavelet‐based multiscale edge analysis and forward models. Exploration Geophysics31, 617–621.
    [Google Scholar]
  15. HolschneiderM.1995. Wavelets, An Analysis Tool . Oxford University Press, Oxford . ISBN 0198534817.
    [Google Scholar]
  16. HornbyP., BoschettiF. and HorovitzF.G.1999. Analysis of potential field data in the wavelet domain. Geophysical Journal International137, 175–196.
    [Google Scholar]
  17. LeblancG.E., MorrisW.A. and RobinsonB.1998. Wavelet analysis approach to de‐noising of magnetic data. 68th SEG meetings, New Orleans , Louisiana , USA , Expanded Abstracts, 554–557.
  18. LiY. and OldenburgD.W.2003. Fast inversion of large‐scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International152, 251–265.
    [Google Scholar]
  19. MallatS.1999. A Wavelet Tour of Signal Processing , 2nd edn. Academic Press. ISBN 012466606X.
    [Google Scholar]
  20. MarteletG., SailhacP., MoreauF. and DiamentM.2001. Characterization of geological boundaries using 1‐D wavelet transform on gravity data: Theory and application to the Himalayas. Geophysics66, 1116–1129.
    [Google Scholar]
  21. MoreauF.1995. Méthodes de traitement de données géophysiques par transformée en ondelettes . PhD thesis, Rennes University I, France . (in French)
  22. MoreauF., GibertD., HolschneiderM. and SaraccoG.1997. Wavelet analysis of potential fields. Inverse Problems13, 165–178.
    [Google Scholar]
  23. MoreauF., GibertD., HolschneiderM. and SaraccoG.1999. Identification of sources of potential fields with the continuous wavelet transform: Basic theory. Journal of Geophysical Research104, 5003–5013.
    [Google Scholar]
  24. MukherjeeS., ZhdanovM.S. and EllisR.G.2004. Altitude correction and improved resolution of gravity gradiometry inversion using analytical continuation. 74th SEG meeting, Denver , Colorado , USA , Expanded Abstracts, P778.
  25. NelsonJ.B.2002. Aeromagnetic noise during low‐altitude flights over the Scotian Shelf. Unclassified Technical Memorandum, DRDC Atlantic, TM 2002‐089.
  26. PhillipsJ.D.2002. Processing and Interpretation of aeromagnetic data for the Santa‐Cruz Basin – Patagonia Mountains Area, South‐Central Arizona. US Geological Survey, Open‐File Report 02‐98.
  27. PilkingtonM. and KeatingP.2006. The relationship between local wavenumber and analytic signal in magnetic interpretation. Geophysics71, 1.1–1.3. doi:DOI: 10.1190/1.2163911
    [Google Scholar]
  28. PouliquenG. and SailhacP.2003. Wavelet analysis of deep‐tow magnetic profiles: Modeling the magnetic layer thickness over oceanic ridges. Journal of Geophysical Research108, 2297–2315.
    [Google Scholar]
  29. Ridsdill‐SmithT.A. and DentithM.C.1999. The wavelet transform in aeromagnetic processing. Geophysics64, 1003–1013.
    [Google Scholar]
  30. RoestW.R., VerhoefJ. and PilkingtonM.1992. Magnetic interpretation using the 3‐D analytic signal. Geophysics57, 116–125.
    [Google Scholar]
  31. SailhacP.1999. Analyse multiéchelle et inversion de données géophysiques en Guyane Française . PhD thesis, IPGP, Paris , France . (in French)
    [Google Scholar]
  32. SailhacP., GaldeanoA., GibertD., MoreauF. and DelorC.2000. Identification of sources of potential fields with the continuous wavelet transform: Complex wavelets and application to aeromagnetic profiles in French Guiana. Journal of Geophysical Research105, 19455–19475.
    [Google Scholar]
  33. SailhacP. and GibertD.2003. Identification of sources of potential fields with the continuous wavelet transform: Two‐dimensional wavelets and multipolar approximations. Journal of Geophysical Research108, 2296–2306.
    [Google Scholar]
  34. TassP., RosemblumM.G., WeuleJ., KurthsJ., PikovskyA., VolkmannJ. et al . 1998. Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Physical Review Letters81, 3291–3294.
    [Google Scholar]
  35. TorresaniB.1995. Analyse continue par ondelettes . InterEditions & CNRS Editions, Paris . ISBN 2729605916.
    [Google Scholar]
  36. ValléeM.A., KeatingP., SmithR.S. and St‐HilaireC.2004. Estimating depth and model type using the continuous wavelet transform of magnetic data. Geophysics69, 191–199.
    [Google Scholar]
  37. WijnsC., PerezC. and KowalczykP.2005. Theta map: Edge detection in magnetic data. Geophysics70, L39–L43. doi:DOI: 10.1190/1.1988184.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2009.00794.x
Loading
/content/journals/10.1111/j.1365-2478.2009.00794.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error