1887
Volume 57, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

A traveltime inversion technique is applied to model the upper ∼40 m of the subsurface of a glaciated shield rock area in order to calculate static corrections for a multi‐azimuth multi‐depth walk‐away vertical seismic profile and a surface seismic reflection profile. First break information from a seismic refraction survey is used in conjunction with a ray‐tracing program and an iterative damped least‐squares inversion algorithm to create a two‐dimensional model of the subsurface. The layout of the seismic survey required crooked seismic lines and substantial gaps in the source and receiver coverage to be accounted for. Additionally, there is substantial topographical variation and a complex geology consisting of glaciofluvial sediment and glacial till overlying a crystalline bedrock. The resolution and reliability of the models is measured through a parameter perturbation technique, normalized χ2 values, root means square traveltime residuals and comparison to known geology.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2009.00798.x
2009-04-02
2020-08-04
Loading full text...

Full text loading...

References

  1. BergmanB., TryggvasonA. and JuhlinC.2006. Seismic tomography studies of cover thickness and near‐surface bedrock velocities. Geophysics71, U77–U84.
    [Google Scholar]
  2. BohmG., AccainoF., RossiG. and TinivellaU.2006. Tomographic joint inversion of first arrivals in a real case from Saudi Arabia. Geophysical Prospecting54, 721–730.
    [Google Scholar]
  3. BridleR.2007. Plus‐minus method to solve large‐amplitude near‐surface static corrections. Near Surface Geophysics5, 321–330.
    [Google Scholar]
  4. BridleR., BarsoukovN., Al‐HomailiM., LeyR. and Al‐MustafaA.2006. Comparing state of the art near‐surface models of a seismic test line from Saudi Arabia. Geophysical Prospecting54, 667–680.
    [Google Scholar]
  5. CarrB.J. and HajnalZ.1999. P‐ and S‐wave characterization of near‐surface reflectivity from glacial tills using vertical seismic profiles. Geophysics64, 970–980.
    [Google Scholar]
  6. CarrB.J., HajnalZ. and PruggerA.1998. Shear‐wave studies in glacial till. Geophysics63, 1273–1284.
    [Google Scholar]
  7. CholachP.Y., MolyneuxJ.B. and SchmittD.R.2005. Flin Flon Belt seismic anisotropy: elastic symmetry, heterogeneity, and shear‐wave splitting. Canadian Journal of Earth Sciences42, 533–554.
    [Google Scholar]
  8. ChorkC.Y. and SalminenR.1993. Interpreting exploration geochemical data from Outokumpu, Finland: a MVE‐robust factor analysis. Journal of Geochemical Exploration48, 1–20.
    [Google Scholar]
  9. ChristensenN.I.1996. Poisson's ratio and crustal seismology. Journal of Geophysical Research-Solid Earth101, 3139–3156.
    [Google Scholar]
  10. DochertyP.1992. Solving for the thickness and velocity of the weathering layer using 2‐D refraction tomography. Geophysics57, 1307–1318.
    [Google Scholar]
  11. DomesF.2004. 2‐D Traveltime inversion of near surface refractions and reflection in support of hydrogeological studies. In: Geophysikalisches Institut . Universität Karlsruhe.
    [Google Scholar]
  12. GodfreyN.J., ChristensenN.I. and OkayaD.A.2000. Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. Journal of Geophysical Research-Solid Earth105, 27991–28007.
    [Google Scholar]
  13. HagedoornJ.G.1959. The plus‐minus method of interpreting seismic refraction sections. Geophysical Prospecting7, 158–182.
    [Google Scholar]
  14. JuhlinC., PalmH., MullernC.F. and WallbergB.2002. Imaging of groundwater resources in glacial deposits using high‐resolution reflection seismics, Sweden. Journal of Applied Geophysics51, 107–120.
    [Google Scholar]
  15. KisslingE., EllsworthW.L., Eberhart‐PhillipsD. and KradolferU.1994. Initial reference models in local earthquake tomography. Journal of Geophysical Research-Solid Earth99, 19635–19646.
    [Google Scholar]
  16. KriegerM.H., HenkeC.H. and MullerC.2000. Static corrections derived from ultradense gravity surveying, inversion and 3‐D modeling of shallow salt and caprock structures. 70th SEG meeting, Calgary , Canada , Expanded Abstracts, P4.
  17. KukkonenI., HeikkinenP., EkdahlE., HjeltS.‐E., YliniemiJ., JalkanenE. et al . 2006. Acquisition and geophysical characteristics of reflection seismic data on FIRE transects, Fennoscandian Shield. In: Finnish Reflection Experiment 2001–2005 (eds I.T.Kukkonen and R.Lahtinen ), pp. 13–43. Geological Survey of Finland, Special Paper 43. ISBN 9516909639.
    [Google Scholar]
  18. KukkonenI.T. and the Outokumpu Deep Drilling Working Group . 2007. Outokumpu Deep Drilling Project – Introduction to geology and geophysics of the deep hole and research within the project. In: Outokumpu Deep Drilling Project, Second International Workshop (ed. I.T.Kukkonen ), pp. 11–16. Geological Survey of Finland, Southern Finland Office Marine Geology and Geophysics , Report Q10.2/2007/29.
    [Google Scholar]
  19. LandaE., KeydarS. and KravtsovA.1995. Determination of a shallow velocity depth model from seismic‐refraction data by coherence inversion. Geophysical Prospecting43, 177–190.
    [Google Scholar]
  20. LanzE., MaurerH. and GreenA.G.1998. Refraction tomography over a buried waste disposal site. Geophysics63, 1414–1433.
    [Google Scholar]
  21. LeyR., AdolfsW., BridleR., Al‐HomailiM., VesnaverA. and RasP.2006. Ground viscosity and stiffness measurements for near surface seismic velocity. Geophysical Prospecting54, 751–762.
    [Google Scholar]
  22. LuostoU., TiiraT., KorhonenH., AzbelI., BurminV., BuyanovA. et al . 1990. Crust and upper mantle structure along the DSS Baltic profile in SE Finland. Geophysical Journal International101, 89–110.
    [Google Scholar]
  23. LuschenE., BramK., SollnerW. and SobolevS.1996. Nature of seismic reflections and velocities from VSP‐experiments and borehole measurements at the KTB deep drilling site in southeast Germany. Tectonophysics264, 309–326.
    [Google Scholar]
  24. MillerK.C., Harder, S.H., AdamsD.C. and O'DonnellT.1998. Integrating high‐resolution refraction data into near‐surface seismic reflection data processing and interpretation. Geophysics63, 1339–1347.
    [Google Scholar]
  25. Van OvermeerenR.A.2001. Hagedoorn's plus‐minus method: The beauty of simplicity. Geophysical Prospecting49, 687–696.
    [Google Scholar]
  26. PrattR.G., SongZ.M., WilliamsonP. and WarnerM.1996. Two‐dimensional velocity models from wide‐angle seismic data by wavefield inversion. Geophysical Journal International124, 323–340.
    [Google Scholar]
  27. ShengJ.M., LeedsA., BuddensiekM. and SchusterG.T.2006. Early arrival waveform tomography on near‐surface refraction data. Geophysics71, U47–U57.
    [Google Scholar]
  28. Sorjonen‐WardP.2006. Geological and structural framework and preliminary interpretation of the FIRE 3 and FIRE 3A reflection seismic profiles, central Finland. In: Finnish Reflection Experiment 2001–2005 (eds I.Kukkonen and R.Lahtinen ), pp. 105–159. Geological Survey of Finland, Special Paper 43. ISBN 9516909639.
    [Google Scholar]
  29. StumpelH., KahlerS., MeissnerR. and MilkereitB.1984. The use of seismic shear‐waves and compressional waves for lithological problems of shallow sediments. Geophysical Prospecting32, 662–675.
    [Google Scholar]
  30. VesnaverA., BridleR., HenryB., LeyR., RoweR. and WyllieA.2006. Geostatistical integration of near‐surface geophysical data. Geophysical Prospecting54, 763–777.
    [Google Scholar]
  31. WhiteD.J.1989. Two‐dimensional seismic refraction tomography. Geophysical Journal-Oxford97, 223–245.
    [Google Scholar]
  32. WhiteD.J. and BolandA.V.1992. A comparison of forward modeling and inversion of seismic 1st arrivals over the Kapuskasing uplift. Bulletin of the Seismological Society of America82, 304–322.
    [Google Scholar]
  33. YordkayhunS., JuhlinC., GieseR. and Cosm, C.2007. Shallow velocity‐depth model using first arrival traveltime inversion at the CO2SINK site, Ketzin, Germany. Journal of Applied Geophysics63, 68–79.
    [Google Scholar]
  34. ZeltC.A.1999. Modelling strategies and model assessment for wide‐angle seismic traveltime data. Geophysical Journal International139, 183–204.
    [Google Scholar]
  35. ZeltC.A., AzariaA. and LevanderA.2006. 3D seismic refraction traveltime tomography at a groundwater contamination site. Geophysics71, H67–H78.
    [Google Scholar]
  36. ZeltC.A., SainK., NaumenkoJ.V. and SawyerD.S.2003. Assessment of crustal velocity models using seismic refraction and reflection tomography. Geophysical Journal International153, 609–626.
    [Google Scholar]
  37. ZeltC.A. and SmithR.B.1992. Seismic traveltime inversion for 2‐D crustal velocity structure. Geophysical Journal International108, 16–34.
    [Google Scholar]
  38. ZeltC.A. and ZeltB.C.1998. Study of out‐of‐plane effects in the inversion of refraction wide‐angle reflection traveltimes. Tectonophysics286, 209–221.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2009.00798.x
Loading
/content/journals/10.1111/j.1365-2478.2009.00798.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error