1887
Volume 57, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We discuss the correlation between the depth extent of magnetic sources, the Curie temperature depth and crustal structures on the mid‐Norwegian margin. Spectral methods can be used to estimate the depth extent of magnetic sources, even if the bottom is located in the lower crust, however, only with limited resolution. The bottom of the magnetic surfaces is often regarded to represent the depth to the Curie isotherm. However, comparison with a 3D model based on the interpretation of potential field and seismic reflection data and thermal modelling shows that the depth extent of the magnetic sources is merely controlled by the overall geometry of the crystalline crust and not the temperature distribution. The observed changes in the magnetic field between the inner and outer part of the mid‐Norwegian margin appears not to reflect, as previously assumed, the depth to the Curie temperature but the geometry of the basement and lower crust. Our 3D model of the mid‐Norwegian margin reveals a basement configuration that involves a basement with different petrophysical properties, which can be connected with lithological basement units of onshore Norway.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2009.00800.x
2009-06-10
2024-03-29
Loading full text...

Full text loading...

References

  1. ÅmK.1975. Aeromagnetic basement complex mapping north of latitude 62°N, Norway. Norges Geologiske Undersøkelse316, 351–374.
    [Google Scholar]
  2. AndersenO.B. and KnudsenP.1998. Gravity anomalies derived from the ERS‐1 satellite altimetry . Kort og Martykelstyrelsen, Kopenhagen .
    [Google Scholar]
  3. ArtemievaI.M. and MooneyW.D.2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research106, 16387–16414.
    [Google Scholar]
  4. AydınI., KaratH.I. and KoçakA.2005. Curie‐point depth map of Turkey. Geophysical Journal International, 162, 633–640.
    [Google Scholar]
  5. BeardsmoreG.R. and CullJ.P.2001. Crustal Heat Flow – A Guide to Measurements and Modelling . Cambridge University Press.
    [Google Scholar]
  6. BhattacharyyaB.1964. Magnetic anomalies due to prism‐shaped bodies with arbitrary polarization. Geophysics29, 517–530.
    [Google Scholar]
  7. BlakelyR.1996. Potential Theory in Gravity and Magnetic Applications . Cambridge University Press.
    [Google Scholar]
  8. BlystadP., BrekkeH., FærsethR.B., LarsenB.T.SkogseidJ. and TørudbakkenB.1995. Structural elements of the Norwegian continental shelf, Part II. The Norwegian Sea Region . Norwegian Petroleum Directorate Bulletin 8.
    [Google Scholar]
  9. BrekkeH.2000. The tectonic evolution of the Norwegian Sea continental margin with emphasis on the Vøring and Møre basins. In: Dynamics of the Norwegian Margin (ed. A.Nøttvedt ), pp. 327–378. Geological Society of London.
    [Google Scholar]
  10. ByerlyP. and StoltR.1977. An attempt to define the Curie point isotherm in northern and central Arizona. Geophysics42, 1394–1400.
    [Google Scholar]
  11. ConnardG., CouchR. and GemperleM.1983. Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics48, 376–390.
    [Google Scholar]
  12. DehlsJ.F., OlesenO., BungumH., HicksE., LindholmC.D. and RiisF.2000. Neotectonic Map, Norway and Adjacent Areas 1:3 Mill . Norges Geologiske Undersøkelse, Trondheim , Norway .
    [Google Scholar]
  13. DoréA.G., LundinE.R., JensenL.N., BirkelandØ., EliassenP.E. and FichlerC.1999. Principal tectonic events in the evolution of the northwest European Atlantic margin. In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (eds A.J.Fleet and S.A.R.Boldy ), pp. 41–61. Geological Society of London.
    [Google Scholar]
  14. EbbingJ., LundinE., OlesenO. and HansenE.K.2006. The mid‐Norwegian margin: A discussion of crustal lineaments, mafic intrusions, and remnants of the Caledonian root by 3D density modelling and structural interpretation. Journal of the Geological Society, London163, 47–60.
    [Google Scholar]
  15. FediM., QuartaT. and De SantisA.1997. Inherent power‐law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophysics62, 1143–1150.
    [Google Scholar]
  16. FichlerC., RundhovdeE., OlesenO., SætherB.M., RueslåttenH., LundinE. et al . 1999. Regional tectonic interpretation of image enhanced gravity and magnetic data covering the Mid‐Norwegian shelf and adjacent mainland. Tectonophysics306, 183–197.
    [Google Scholar]
  17. FowlerC.M.R.2005. The Solid Earth – An Introduction To Global Geophysics , 2nd edn. Cambridge University Press.
    [Google Scholar]
  18. GernigonL., LucazeauF., BrigaudF., RingenbachJ. C. and Le GallB.2006. A moderate melting model for the Vøring margin (Norway) based on structural observations and a thermo‐kinematical modelling: Implication for the meaning of the lower crustal bodies. Tectonophysics412, 255–278.
    [Google Scholar]
  19. GernigonL., OlesenO., EbbingJ., WieneckeS., GainaC., MogaardJ.O. et al . 2009. Geophysical insights and early spreading history in the vicinity of the Jan Mayen Fracture Zone, Norwegian‐Greenland Sea. Tectonophysics (in press).
    [Google Scholar]
  20. GernigonL., RingenbachJ.‐C., PlankeS. and Le GallB.2004. Deep structure and breakup along volcanic rifted margins: insights from integrated studies along the outer Vøring Basin (Norway). Marine and Petroleum Geology21, 363–372.
    [Google Scholar]
  21. GötzeH.‐J. and LahmeyerB.1988. Application of three‐dimensional interactive modeling in gravity and magnetics. Geophysics53, 1096–1108.
    [Google Scholar]
  22. HaenelR.1974. Heat flow measurements in the Norwegian Sea. Meteor-Forschungsergebnisse Reihe C: Geologie und Geophysik17, 74–78.
    [Google Scholar]
  23. HuntC.P., MoskowitzB.M. and BanerjeeS.K.1995. Magnetic properties of rocks and minerals. In: Rock Physics and Phase Relations. A Handbook of Physical Constants (ed. T.J.Ahrens ), pp. 189–204. American Geophysical Union.
    [Google Scholar]
  24. KukkonenI.T. and PeltonenP.1999. Xenolith‐controlled geotherms for the central Fennoscandian Shield: Implications for lithosphere‐asthenosphere relations. Tectonophysics304, 301–315.
    [Google Scholar]
  25. MausS., GordonD. and FairheadJ.D.1997. Curie‐temperature depth estimation using a self‐similar magnetization model. Geophysical Journal International129, 163–168.
    [Google Scholar]
  26. McKenzieD., JacksonJ. and PriestleyK.2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters233, 337–349.
    [Google Scholar]
  27. MjeldeR., DigranesP., Van SchaackM., ShimamuraH., ShiobaraH., KodairaS. et al . 2001. Crustal structure of the outer Vøring Plateau, offshore Norway, from ocean bottom seismic and gravity data. Journal of Geophysical Research106, 6769–6791.
    [Google Scholar]
  28. MjeldeR., FaleideJ.I., BreivikA.J. and RaumT.2009. Lower crustal composition and crustal lineaments on the Vøring Margin, NE Atlantic: A review. Tectonophysics (in press).
    [Google Scholar]
  29. MjeldeR., RaumT., BreivikA., ShimamuraH., MuralY., TakanamiT. et al . 2005. Crustal structure of the Vøring margin, NE Atlantic: A review of geological implications based on recent OBS data. In: Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference (eds A.G.Doré and B.A.Vining ), pp. 803–813. Geological Society of London.
    [Google Scholar]
  30. MjeldeR., RaumT., DigranesP., ShimamuraH., ShiobaraH. and KodairaS.2003a. Vp/Vs ratio along the Vøring Margin, NE Atlantic, derived from OBS data: Implications on lithology and stress field. Tectonophysics369, 175–197.
    [Google Scholar]
  31. MjeldeR., ShimamuraH., KanazawaT., KodairaS., RaumT. and ShiobaraH.2003b. Crustal lineaments, distribution of lower crustal intrusives and structural evolution of the Vøring Margin, NE Atlantic; New insight from wide‐angle seismic models. Tectonophysics369, 199–218.
    [Google Scholar]
  32. MørkM.B.E., McEnroeS.A. and OlesenO.2002. Magnetic susceptibility of Mesozoic and Cenozoic sediments off Mid Norway and the role of siderite: Implications for interpretation of high‐resolution aeromagnetic anomalies. Marine and Petroleum Geology19, 1115–1126.
    [Google Scholar]
  33. NadeauP.H., BjørkumP.A. and WalderhaugO.2005. Petroleum system analysis: Impact of shale diagenesis on reservoir fluid pressure, hydrocarbon migration and biodegradation risks. In: Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the 6th Petroleum Conference (eds. A.G.Doré and B.Ving ), pp. 1267–1274. Geological Society of London.
    [Google Scholar]
  34. NaiduP. S. and MathewM. P.1998. Correlation filtering: A terrain correction method for aeromagnetic maps with application. Journal of Applied Geophysics32, 269–277.
    [Google Scholar]
  35. OkuboY., GraftR.J., HansenR.O., OgawasK. and TsuH.1985. Curie point depths of the Island of Kyushu and surrounding areas, Japan. Geophysics53, 481–494.
    [Google Scholar]
  36. Olesen, O., Ebbing, J., Lundin, E., Mauring, E., Skilbrei, J.R., Torsvik, T.H. et al . 2007. An improved tectonic model for the Eocene opening of the Norwegian–Greenland Sea: Use of modern magnetic data. Marine and Petroleum Geology24, 53–66. doi:DOI: 10.1016/j.marpetgeo.2006.10.008
    [Google Scholar]
  37. OlesenO., HenkelH., KaadaK. and TvetenE.1991. Petrophysical properties of a prograde amphibolite – granulite facies transition zone at Sigerfjord, Vesterålen, Northern Norway. Tectonophysics192, 33–39.
    [Google Scholar]
  38. OlesenO., LundinE., NordgulenØ., OsmundsenP.T., SkilbreiJ.R., SmethurstM.A. et al . 2002. Bridging the gap between the onshore and offshore geology in Nordland, northern Norway. Norwegian Journal of Geology82, 243–262.
    [Google Scholar]
  39. OsmundsenP.T. and Ebbing, J.2008. Styles of extension offshore Mid Norway and implications for mechanisms of Late Jurassic‐Early Cretaceous rifting. Tectonics27, TC6016. doi:DOI: 10.1029/2007TC002242
    [Google Scholar]
  40. OsmundsenP.T., SommarugaA., SkilbreiJ.R. and OlesenO.2002. Deep structure of the Mid‐Norway rifted margin. Norwegian Journal of Geology82, 205–224.
    [Google Scholar]
  41. PilkingtonM. and TodoeschuckJ. P.1993. Fractal magnetization of continental crust. Geophysical Research Letters20, 627–630.
    [Google Scholar]
  42. RaumT., MjeldeR., DigranesP., ShimamuraH., ShiobaraH., KodairaS. et al . 2002. Crustal structure of the southern part of the Vøring Basin, mid‐Norway, from wide‐angle seismic and gravity data. Tectonophysics355, 99–126.
    [Google Scholar]
  43. RitterU., ZielinskiG.R., WeissH.M., ZielinskiR.L.B. and SættemJ.2004. Heat flow in the Vøring Basin, Mid‐Norwegian Shelf. Petroleum Geoscience10, 353–365.
    [Google Scholar]
  44. RossH.E., BlakelyR.J. and ZobackM.D.2006. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics71, 51–59.
    [Google Scholar]
  45. ShueyR., SchlechingerD., TrippA. and AlleyL.1977. Curie depth determination from aeromagnetic spectra. Geophysical Journal of the Royal Astronomical Society50, 75–102.
    [Google Scholar]
  46. SkilbreiJ.R., KihleO., OlesenO., GelleinJ., SindreA., SolheimD. et al . 2000. Gravity Anomaly Map Norway and Adjacent Ocean Areas, 1:3 Million . Geological Survey of Norway (NGU), Trondheim .
    [Google Scholar]
  47. SkilbreiJ.R. and OlesenO.2005. Deep structure of the Mid‐Norwegian shelf and onshore‐offshore correlations: Insight from potential field data. In: Onshore‐Offshore relationships on the North Atlantic Margin (eds. B.T.G.Wandås , E.A.Eide , F.Gradstein and J.P.Nystuen ), pp. 43–68. Norwegian Petroleum Society (NPF).
    [Google Scholar]
  48. SkogseidJ., PedersenT., EldholmO. and LarsenB.T.1992. Tectonism and magmatism during NE Atlantic continental break‐up: The Vøring margin. In: Magmatism and the Causes of Continental Break‐up (eds B.C.Story , T.Alabaster and R.J.Plankhurst ), pp. 305–320. Geological Society of London.
    [Google Scholar]
  49. SkilbreiJ.R., SkysethT. and OlesenO.1991. Petrophysical data and opaque mineralogy of high grade and retrogressed lithologies: Implications for the interpretation of aeromagnetic anomalies in northern Vestranden, Western Gneiss Region, Central Norway. Tectonophysics192, 21–31.
    [Google Scholar]
  50. SlagstadT.2008. Radiogenic heat production of Archean to Permian geological provinces in Norway. Norwegian Journal of Geology88, 149–166.
    [Google Scholar]
  51. SpectorA. and GrantF.S.1970a. Application of high sensitivity aeromagnetic surveying to offshore petroleum exploration. Geophysical Prospecting18, 474–475.
    [Google Scholar]
  52. SpectorA. and GrantF.S.1970b, Statistical models for interpreting aeromagnetic data. Geophysics35, 293–302.
    [Google Scholar]
  53. SteinC.A. and SteinS.1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature359, 123–129.
    [Google Scholar]
  54. SundvorE., EldholmO., GladczenkoT. P. and PlankeS.2000. Norwegian‐Greenland Sea thermal field. Geological Society of London, Special Publications167, 397–410.
    [Google Scholar]
  55. SundvorE., MyhreA. M. and EldholmO.1989. Heat Flow Measurements on the Norwegian Continental Margin During the FLUNORGE Project . Seismological Observatory, University of Bergen.
    [Google Scholar]
  56. TanakaA., OkuboY. and MatsubayashiO.1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics306, 461–470.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2009.00800.x
Loading
/content/journals/10.1111/j.1365-2478.2009.00800.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error