1887
Advances in Electromagnetic, Gravity and Magnetic Methods for Exploration
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Different geophysical methods were used to determine the characteristics of a highly conductive structure in Northern Sweden, first discovered on airborne data. Airborne electromagnetic (very low frequency) data indicate a high conductivity structure coincident with low magnetic patterns. The airborne data were processed in different ways to enhance various structures/features. In particular we introduce a new transformation to current density that is suitable for delineating conductive structures. Ground measurements of the total magnetic field, radiomagnetotelluric measurements and resistivity imaging provided valuable information that was used in the compilation of a new bedrock map over the area. The results of our measurements indicate that the conducting structure consists of metasedimentary rocks containing thin horizons of pyrrhotite and graphite.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2011.00998.x
2011-09-22
2024-04-24
Loading full text...

Full text loading...

References

  1. AiroM.‐L. and Loukola‐RuskeeniemiK.2004. Characterization of sulfide deposits by airborne magnetic and gamma‐ray responses in eastern Finland. Ore Geology Reviews24, 67–84.
    [Google Scholar]
  2. AiroM.‐L. and MertanenS.2008. Magnetic signatures related to orogenic gold mineralization, Central Lapland Greenstone Belt, Finland. Journal of Applied Geophysics64, 14–24.
    [Google Scholar]
  3. AiroM.‐L. and WennerströmM.2010. Application of regional aeromagnetic data in targeting detailed fracture zones. Journal of Applied Geophysics71, 62–70.
    [Google Scholar]
  4. Antal LundinI. and BastaniM.2007. Analysis of petrophysical properties of some granitoids in Sweden. Journal of Applied Geophysics62, 74–87.
    [Google Scholar]
  5. BastaniM.2001. EnviroMT – A new controlled source /radio magnetotelluric system. PhD thesis, Acta Universitatis Upsaliensis.
  6. BastaniM., MalehmirA., IsmailN., PedersenL.B. and HedjaziF.2009. Delineating hydrothermal stockwork copper deposits using controlled‐source and radio‐magnetotelluric methods: A case study from northeast Iran. Geophysics74, 167–181.
    [Google Scholar]
  7. BastaniM. and PerssonL.2004. Use of combined geophysical techniques in geological mapping – Some examples in Sweden. 66th EAGE meeting, Paris , France , Expanded Abstracts, P151.
  8. BastaniM., PerssonL., and PedersenL.B.2009. Near surface case studies using RMT measurements in Sweden. 15th Near Surface meeting, Dublin , Ireland , Expanded Abstracts, A35.
  9. BeckenM. and PedersenL.B.2003. Transformation of VLF anomaly maps into apparent resistivity and phase. Geophysics68, 497–505.
    [Google Scholar]
  10. BergmanS., KüblerL. and MartinssonO.2001. Description of regional geological and geophysical maps of northern Norrbotten County (east of the Caledonian orogen). Geological Survey of Sweden, Ba 56.
  11. ClaesonD. and Antal LundinI.2007. Kartområdet 27K Nattavaara. In: Berggrundsgeologisk undersökning. Sammanfattning av pågående verksamhet 2006 (ed. H.Delin ), pp. 33–41. Geological Survey of Sweden. Rapporter och meddelanden 126 (in Swedish).
    [Google Scholar]
  12. ClaesonD. and Antal LundinI.2008. Kartområdet 27K Nattavaara. In: Berggrundsgeologisk undersökning. Sammanfattning av pågående verksamhet 2007 (ed. H.delin ), pp. 13–26. Geological Survey of Sweden. Rapporter och meddelanden 130 (in Swedish).
    [Google Scholar]
  13. DahlinT.1996. 2D resistivity surveying for environmental and engineering applications. First Break14, 275–283.
    [Google Scholar]
  14. GaalG. and GorbatschevR.1987. An outline of the Precambrian evolution of the Baltic Shield. Precambrian Research35, 15–52.
    [Google Scholar]
  15. GorbatschevR. and BogdanovaS.1993. Frontiers in the Baltic Shield. Precambrian Research64, 3–21.
    [Google Scholar]
  16. HenkelH. and GuzmanM.1977. Magnetic features of fracture zones. Geoexploration15, 173–181.
    [Google Scholar]
  17. KalscheuerT., GarciaM., MeqbelN. and PedersenL.B.2010. Non‐linear model error and resolution properties from two‐dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data. Geophysical Journal International182, 1174–1188.
    [Google Scholar]
  18. KalscheuerT., PedersenL.B. and SiripunvarapornW.2008. Radiomagnetotelluric two‐dimensional forward and inverse modelling accounting for displacement currents. Geophysical Journal International175, 486–514.
    [Google Scholar]
  19. LokeM.H.2004. Rapid 2‐D resistivity & IP inversion using the least‐squares method. Manual for Res2dinv, version 3.54 (available at http://www.geoelectrical.com).
  20. LundströmI. and AntalI.1997. Kartbladen 23K Boliden. In: Regional berggrundsgeologisk undersökning – sammanfattning av pågående undersökningar 1996 (ed. C.‐H.Wahlgren ), pp. 56–62. Geological Survey of Sweden. Rapporter och meddelanden 89 (in Swedish).
    [Google Scholar]
  21. McNeillJ.D. and LabsonV.F.1990. Geological mapping using VLF radio fields. In: Electromagnetic Methods in Applied Geophysics , Volume 2, Part B (ed. M.N.Nabighian ), pp. 521–640. SEG.
    [Google Scholar]
  22. PedersenL.B., BastaniM. and DynesiusL.2005. Groundwater exploration using combined controlled source and radiomagnetotelluric techniques. Geophysics70, 8–15.
    [Google Scholar]
  23. PedersenL.B., PerssonL., BastaniM. and ByströmS.2009. Airborne VLF measurements and mapping of ground conductivity in Sweden. Journal of Applied Geophysics67, 250–258.
    [Google Scholar]
  24. PedersenL.B., QianW., DynesiusL. and ZhangP.1994. An airborne tensor VLF system. From concept to realization. Geophysical Prospecting42, 863–883.
    [Google Scholar]
  25. PerssonL.2001. Plane wave methods for imaging fracture zones . PhD thesis, Acta Universatis Upsaliensis.
    [Google Scholar]
  26. PerssonL., BeckenM., DanielsJ. and AntalI.2001. New developments in the processing and interpretation of airborne VLF‐EM data. 71st SEG meeting, San Antonio , Texas , USA , Expanded Abstracts, 1423–1426.
  27. SiripunvarapornW. and EgbertG.2000. An efficient data‐subspace inversion method for two‐dimensional magnetotelluric data. Geophysics65, 791–803.
    [Google Scholar]
  28. SohleniusG., BastaniM., PerssonL. and LaxK.2009. On the recognition of areas with problematic sulphidic sediments using multi‐disciplinary data. Environmental Geology56, 973–984.
    [Google Scholar]
  29. StrattonJ.A.1941. Electromagnetic Theory . McGraw‐Hill.
    [Google Scholar]
  30. TurbergP., MüllerI. and FluryF.1994. Hydrogeological investigation of porous environments by radio magnetotelluric‐resistivity (RMT‐R 12–240 kHz). Journal of Applied Geophysics31, 133–143.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2011.00998.x
Loading
/content/journals/10.1111/j.1365-2478.2011.00998.x
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Conductive structures; Electromagnetics; Inversion; Magnetics; Resistivity

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error