1887
Advances in Electromagnetic, Gravity and Magnetic Methods for Exploration
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The geological interpretation of gravity gradiometry data is a very challenging problem. While maps of different gravity gradients may be correlated with geological structures present, maps alone cannot quantify 3D density distributions related to geological structures. 3D inversion represents the only practical tool for the quantitative interpretation of gravity gradiometry data. However, 3D inversion is a complicated and time‐consuming procedure that is very dependent on the a priori model and constraints used. To overcome these difficulties for the initial stages of an interpretation workflow, we introduce the concept of potential field migration, and demonstrate how it can be applied for rapid 3D imaging of entire gravity gradiometry surveys. This method is based on a direct integral transformation of the observed gravity gradients into a subsurface density distribution that can be used for interpretation or as an a priori model for subsequent 3D regularized inversion. For large‐scale surveys, we show how migration runs on the order of minutes compared to hours for 3D regularized inversion. Moreover, the results obtained from potential field migration are comparable to those obtained from regularized inversion with smooth stabilizers. We present a case study for the 3D imaging of FALCON airborne gravity gradiometry data from Broken Hill, Australia. We observe good agreement between results obtained from potential field migration and those generated by 3D regularized inversion.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2011.01005.x
2011-09-27
2024-04-20
Loading full text...

Full text loading...

References

  1. BerkhoutA.J.1980. Seismic Migration . Elsevier.
    [Google Scholar]
  2. ClaerboutJ.F.1985. Imaging the Earth’s Interior . Blackwell Scientific Publications.
    [Google Scholar]
  3. FediM.2007. DEXP: A fast method to determine the depth to the sources of potential fields. Geophysics72, L1–L11. doi:10.1190/1.2399452.
    [Google Scholar]
  4. FediM. and FlorioG.2006. SCALFUN: 3D analysis of potential field scaling function to determine independently or simultaneously structural index and depth to source. 76th SEG meeting , New Orleans, Louisiana , USA , Expanded Abstracts. doi:10.1190/1.2372499.
    [Google Scholar]
  5. HensleyC.2003. Data Processing Report (Sponsored Section), Airborne Gravity Gradiometer Survey, Broken Hill, NSW, Australia . BHP Billiton.
    [Google Scholar]
  6. HornbyP., BoschettiF. and HorowitzF.G.1999. Analysis of potential field data in the wavelet domain. Geophysical Journal International137, 175–196. doi:10.1046/j.1365‐246x.1999.00788.x.
    [Google Scholar]
  7. IslesD.J.1979. A probable extension to the Willyama block in NSW. Exploration Geophysics10, 191–192. doi:10.1071/EG979191.
    [Google Scholar]
  8. LaneR.2006. Investigations stemming from the 2003 Broken Hill airborne gravity gradiometer survey. In: Broken Hill Exploration Initiative 2006 Conference Abstracts (eds. R.J.Korsch and R.G.Barnes ), pp. 116–128. Geoscience Australia Record 2006/21.
    [Google Scholar]
  9. LaneR., MilliganP. and RobsonD.2003. An airborne gravity gradiometer survey of Broken Hill. In: Broken Hill Exploration Initiative 2003 Conference Abstracts (ed. M.Peljo ), pp. 89–92. Geoscience Australia Record 2003/13.
    [Google Scholar]
  10. LaneR. and PeljoM.2004. Estimating the pre‐mining gravity and gravity gradient response of the Broken Hill Ag‐Pb‐Zn deposit. ASEG 17 th Geophysical Conference and Exhibition, Expanded Abstracts. doi:10.1071/ASEG2004ab083.
    [Google Scholar]
  11. LeeJ.B.2001. FALCON gravity gradiometer technology. Exploration Geophysics32, 247–250. doi:10.1071/EG01247.
    [Google Scholar]
  12. LiY.2001. 3D inversion of gravity gradiometer data. 71 st SEG meeting , San Antonio, Texas , USA , Expanded Abstracts. doi:10.1190/1.1816383.
    [Google Scholar]
  13. ParrJ.M., StevensB.P.J., CarrG.R. and PageR.W.2004. Subseafloor origin for Broken Hill Pb‐Zn‐Ag mineralization, New South Wales, Australia. Geology32, 589–592. doi: 10.1130/G20358.1.
    [Google Scholar]
  14. RuszkowskiP.1998. An analysis of the Broken Hill exploration initiative petrophysical database. Exploration Geophysics29, 592–596. doi:10.1071/EG998592.
    [Google Scholar]
  15. SalemA. and RavatD.2003. A combined analytic signal and Euler method (AN‐EUL) for automatic interpretation of magnetic data. Geophysics68, 1952–1961. doi:10.1190/1.1635049.
    [Google Scholar]
  16. SailhacP. and GibertD.2003. Identification of sources of potential fields with the continuous wavelet transform: Two‐dimensional wavelets and multipolar approximations. Journal of Geophysical Research108, 22–62. doi:10.1029/2002JB002021.
    [Google Scholar]
  17. SchneiderW.A.1978. Integral formulation for migration in two and three dimensions. Geophysics43, 49–76. doi:10.1190/1.1440828.
    [Google Scholar]
  18. SmithR.S. and SalemA.2005. Imaging depth, structure, and susceptibility from magnetic data: The advanced source‐parameter imaging method. Geophysics70, L31–L38. doi:10.1190/1.1990219.
    [Google Scholar]
  19. StavrevP.Y.1997. Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies. Geophysical Prospecting45, 207–246. doi:10.1046/j.1365‐2478.1997.00331.x.
    [Google Scholar]
  20. StavrevP.Y.2006. Inversion of elongated magnetic anomalies using magnitude transforms. Geophysical Prospecting54, 153–166. doi:10.1111/j.1365‐2478.2006.00550.x.
    [Google Scholar]
  21. StrakhovV.N.1970a. Some aspects of the plane inverse problem of magnetic potential. Izvestiya Akademii Nauk SSSR Fizika Zemli9, 31–41 (in Russian).
    [Google Scholar]
  22. StrakhovV.N.1970b. Some aspects of the plane gravitational problem. Izvestiya Akademii Nauk SSSR Fizika Zemli12, 32–44 (in Russian).
    [Google Scholar]
  23. ThompsonD.T.1982. EULDPH: A new technique for making computer assisted depth estimates from magnetic data. Geophysics47, 31–37. doi:10.1190/1.1441278.
    [Google Scholar]
  24. ZhdanovM.S.1988. Integral Transforms in Geophysics . Springer‐Verlag.
    [Google Scholar]
  25. ZhdanovM.S.2002. Geophysical Inverse Theory and Regularization Problems . Elsevier.
    [Google Scholar]
  26. ZhdanovM.S.2009a. Geophysical Electromagnetic Theory and Methods . Elsevier.
    [Google Scholar]
  27. ZhdanovM.S.2009b. New advances in 3D regularized inversion of gravity and electromagnetic data. Geophysical Prospecting57, 463–478. doi:10.1111/j.1365‐2478.2008.00763.x.
    [Google Scholar]
  28. ZhdanovM.S., EllisR.G. and MukherjeeS.2004. Regularized focusing inversion of 3D gravity tensor data. Geophysics69, 925–937. doi:10.1190/1.1778236.
    [Google Scholar]
  29. ZhdanovM.S., LiuX. and WilsonG.2010. Potential field migration for rapid 3D imaging of entire gravity gradiometry surveys. First Break28, 47–51.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2011.01005.x
Loading
/content/journals/10.1111/j.1365-2478.2011.01005.x
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Gradiometry; Gravitation; Migration

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error