1887
Volume 2, Issue 1
  • E-ISSN:

Abstract

Implementing a constitutive model is a long, tedious and error-prone process, in particular for soils where a wide variety of phenomena must be taken into account. Moreover, the implementation must satisfy the interface requirements of the targeted solver. MFront is a popular code generator based on C++ mostly dedicated to mechanical behaviours which provides interfaces for many academic and industrial solvers. MFront implementations also export metadata which considerably simplifies the behaviour integration in the solver, in particular if the MFrontGenericInterfaceSupport (MGIS) is used by this solver. While MFront greatly reduces the amount of work required to implement a new behaviour, existing legacy implementations are highly valuable and their re-implementation should only be considered with caution considering the trade-offs. In our experience, such a re-implementation increases the maintainability and portability, and generally the numerical performances, but requires significant development effort. In this work, we developed an alternative approach, which consists in using MFront as a wrapper to existing legacy implementations. The MFront wrapper also manages the definition of appropriate metadata and handles the transfer of the data from solver to the legacy implementation on input and output. At this stage, the approach has been used to make available all constitutive models implemented in the UMAT format (written in Fortran) in the OpenGeoSys solver which is linked to MFront via MGIS. The results of a simulation using a UMAT-model in OpenGeoSys verify the approach. The usage of MFront as a wrapper is also shown to have an insignificant/negligible impact on the numerical performance. The proposed approach opens the door to the establishment of a new database of constitutive material models in MFront where legacy implementation of existing models can be made available in all solvers interfaced with MFront.

This article is part of the Sustainable geological disposal and containment of radioactive waste collection available at: https://www.lyellcollection.org/topic/collections/radioactive

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2023-018
2024-01-25
2024-10-03
Loading full text...

Full text loading...

References

  1. Bažant, Z.P., Gattu, M. and Vorel, J.2012. Work conjugacy error in commercial finite-element codes: its magnitude and how to compensate for it. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468, 3047–3058, https://doi.org/10.1098/rspa.2012.0167, https://doi.org/10.1098/rspa.2012.0167
    [Google Scholar]
  2. Belytschko, T.2014. Nonlinear Finite Elements for Continua and Structures. Wiley-Blackwell, Chichester; New York.
    [Google Scholar]
  3. Bilke, L., Flemisch, B., Kalbacher, T., Kolditz, O., Helmig, R. and Nagel, T.2019. Development of open-source porous media simulators: principles and experiences. Transport in Porous Media, 130, 337–361, https://doi.org/10.1007/s11242-019-01310-1
    [Google Scholar]
  4. Birkholzer, J.T., Tsang, C.-F., Bond, A.E., Hudson, J.A., Jing, L. and Stephansson, O.2019. 25 years of DECOVALEX - scientific advances and lessons learned from an international research collaboration in coupled subsurface processes. International Journal of Rock Mechanics and Mining Sciences, 122, 103995, https://doi.org/10.1016/j.ijrmms.2019.03.015
    [Google Scholar]
  5. CAE Assistant Group2023. Start Writing Your 1st UMAT for Abaqus (PART A: Foundation), October, https://caeassistant.com/blog/start-writing-your-1st-umat-in-abaqus-foundation/
  6. CEA, EDF2021. TFEL/MFront website, https://thelfer.github.io/tfel/web/index.html
  7. Czaikowski, O., Friedenberg, L. et al.2020. KOMPASS - Compaction of Crushed Salt for the Safe Containment. GRS, BGR, BGE Technology GmbH, SANDIA, TUC, IfG GmbH, Braunschweig, Technical Report GRS - 608.
    [Google Scholar]
  8. EDF R&D2021. Code_Aster Documentation: Opérateur DEFI_MATERIAU. Électricité de France (EDF).
    [Google Scholar]
  9. EndlSianfV2020. Verordnung über Sicherheitsanforderungen an die Endlagerung hochradioaktiver Abfälle (Endlagersicherheitsanforderungsverordnung - EndlSiAnfV) vom 6. Oktober 2020 (GBl. I S. 2094).
  10. Epkenhans, I., Wacker, S. and Stahlmann, J.2022. Weiterentwicklung und Qualifizierung der gebirgsmechanischen Modellierung für die HAW-Endlagerung im Steinsalz (WEIMOS). Teilprojekt D. TU Braunschweig, Braunschweig, Technical Report 02E11446D.
    [Google Scholar]
  11. Friedenberg, L., Bartol, J. et al.2022. Compaction of crushed salt for safe containment – overview of phase 2 of the KOMPASS project. In:de Bresser, J.H.P., Drury, M.R., Fokker, P.A., Gazzani, M., Hangx, S.J.T., Niemeijer, A.R. and Spiers, C.J. (eds) The Mechanical Behavior of Salt X: Proceedings of the 10th Conference on the Mechanical Behavior of Salt (SALTMECH X), 06–08 July 2022, Utrecht, The Netherlands. CRC Press, London, 283–291.
    [Google Scholar]
  12. Görke, U.-J., Günther, H., Nagel, T. and Wimmer, M.A.2010. A large strain material model for soft tissues with functionally graded properties. Journal of Biomechanical Engineering, 132, 074502, https://doi.org/10.1115/1.4001312
    [Google Scholar]
  13. Gudehus, G., Amorosi, A. et al.2008. The soilmodels.info project. International Journal for Numerical and Analytical Methods in Geomechanics, 32, 1571–1572, https://doi.org/10.1002/nag.675
    [Google Scholar]
  14. Hampel, A., Herchen, K., Lux, K.-H., Günther, R.-M., Salzer, K. and Minkley, W.2016. Vergleich Aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz Verbundprojekt III zum Stoffgesetzvergleich (01.10.2010–30.09.2016) - Synthesebericht / Comparison of Advanced Constitutive Models and Modeling Procedures with Model Calculations of the Thermo-Mechanical Behavior and Healing of Rock Salt - Synthesis Report. Dr. Andreas Hampel, TU Clausthal, IfG GmbH, Karlsruher Institut für Technologie, Leibniz Universität Hannover, TU Braunschweig, Mainz, Technical Report 02E10810, 02E10860, 01024331.
    [Google Scholar]
  15. Helfer, T. and Simo, E.2022. Introducing small strain legacy Abaqus/UMAT implementations in MFrontGallery. Technical Report, https://doi.org/10.13140/RG.2.2.11463.16806
  16. Helfer, T., Michel, B., Proix, J.-M., Salvo, M., Sercombe, J. and Casella, M.2015. Introducing the open-source mfront code generator: application to mechanical behaviours and material knowledge management within the PLEIADES fuel element modelling platform. Computers & Mathematics with Applications, https://doi.org/10.1016/j.camwa.2015.06.027
    [Google Scholar]
  17. Helfer, T., Bleyer, J., Frondelius, T., Yashchuk, I., Nagel, T. and Naumov, D.2020a. The ‘MFrontGenericInterfaceSupport’ project. Journal of Open Source Software, 5, 2003, https://doi.org/10.21105/joss.02003
    [Google Scholar]
  18. Helfer, T., Nagel, T. and Mašín, D.2020b. Using MFront as a Wrapper for a Thermo-Hydro-Mechanical Behaviour for Bentonite Available in the TRIAX Package.
    [Google Scholar]
  19. IAEA2016. Safety Assessment for Facilities and Activities. International Atomic Energy Agency (IAEA), Vienna, Austria, Technical report.
    [Google Scholar]
  20. Janda, T. and Mašín, D.2017. General method for simulating laboratory tests with constitutive models for geomechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 41, 304–312, https://doi.org/10.1002/nag.2558
    [Google Scholar]
  21. Kolditz, O., Bauer, S. et al..2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67, 589–599, https://doi.org/10.1007/s12665-012-1546-x
    [Google Scholar]
  22. Kuznetsov, S. and Ilyashenko, A.2018. Cam-clay models in mechanics of granular materials. Mechanics and Mechanical Engineering, 21, 813–821.
    [Google Scholar]
  23. Lüdeling, C., Günther, R.-M. et al.2022. WEIMOS: creep of rock salt at low deviatoric stresses. In:de Bresser, J.H.P., Drury, M.R., Fokker, P.A., Gazzani, M., Hangx, S.J.T., Niemeijer, A.R. and Spiers, C.J. (eds) The Mechanical Behavior of Salt X: Proceedings of the 10th Conference on the Mechanical Behavior of Salt (SALTMECH X), 06–08 July 2022, Utrecht, The Netherlands. CRC Press, London, 130–140.
    [Google Scholar]
  24. Mašín, D.2005. A hypoplastic constitutive model for clays. International Journal for Numerical and Analytical Methods in Geomechanics, 29, 311–336, https://doi.org/10.1002/nag.416, https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.416
    [Google Scholar]
  25. Mašín, D.2014. Clay hypoplasticity model including stiffness anisotropy. Géotechnique, 64, 232–238, https://doi.org/10.1680/geot.13.P.065
    [Google Scholar]
  26. Mašín, D.2017. PLAXIS implementation of HYPOPLASTICITY including standalone ABAQUS umat subroutines, http://web.natur.cuni.cz/uhigug/masin/plaxumat/
  27. Mašín, D.2018. Triax element test driver, January, https://soilmodels.com/triax/
  28. Nagel, T. and Kelly, D.J.2012. Apparent behaviour of charged and neutral materials with ellipsoidal fibre distributions and cross-validation of finite element implementations. Journal of the Mechanical Behavior of Biomedical Materials, 9, 122–129 , https://doi.org/10.1016/j.jmbbm.2012.01.006
    [Google Scholar]
  29. Nagel, T., Görke, U.-J., Moerman, K. and Kolditz, O.2016. On advantages of the kelvin mapping in finite element implementations of deformation processes. Environmental Earth Sciences, 75, https://doi.org/10.1007/s12665-016-5429-4
    [Google Scholar]
  30. Nethercote, N. and Seward, J.2007. Valgrind a program supervision framework. Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, San Diego, California, USA, 42, 89, https://doi.org/10.1145/1250734.1250746
    [Google Scholar]
  31. Parisio, F., Lehmann, C. and Nagel, T.2020. A model of failure and localization of Basalt at temperature and pressure conditions spanning the brittle-ductile transition. Journal of Geophysical Research: Solid Earth, 125, 1–18, https://doi.org/10.1029/2020JB020539
    [Google Scholar]
  32. PLAXIS2022a. PLAXIS CONNECT Edition V22.02: Material Models Manual. Bentley Systems, Incorporated, Delft, Netherlands.
    [Google Scholar]
  33. PLAXIS2022b. PLAXIS CONNECT Edition V22.02: General Information Manual. Bentley Systems, Incorporated, Delft, Netherlands.
    [Google Scholar]
  34. Plúa, C., Vu, M.N. et al.2021. A reliable numerical analysis for large-scale modelling of a high-level radioactive waste repository in the Callovo-Oxfordian claystone. International Journal of Rock Mechanics and Mining Sciences, 140, 104574,https://doi.org/10.1016/j.ijrmms.2020.104574
    [Google Scholar]
  35. Roscoe, K.H. and Burland, J.1968. On the generalized stress-strain behavior of wet clays. In: Heyman, J. and Leckie, F. (eds) Engineering Plasticity, Cambridge University Press, Cambridge, 535–609.
    [Google Scholar]
  36. Roscoe, K.H., Schofield, A.N. and Wroth, C.P.1958. On the yielding of soils. Géotechnique, 8, 22–53, https://doi.org/10.1680/geot.1958.8.1.22
    [Google Scholar]
  37. Seyedi, D.M., Armand, G. and Noiret, A.2017. ‘Transverse Action’ – a model benchmark exercise for numerical analysis of the callovo-oxfordian claystone hydromechanical response to excavation operations. Computers and Geotechnics, 85, 287–305, https://doi.org/10.1016/j.compgeo.2016.08.008
    [Google Scholar]
  38. Simo, E., Herold, P. et al.2022. Projekt PIONIER: implementierung und Weiterentwicklung von Stoffmodellen für Tongesteine und Bentonit zur Simulation THM – gekoppelter Prozesse im Rahmen sicherheitsanalytischer Untersuchungen. In:Tagungsband zu den Tagen der Standortauswahl 2022 in Aachen, Aachen, Germany. RWTH Aachen, 33.
    [Google Scholar]
  39. StandAG2017. Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle und zur Änderung anderer Gesetze (Standortauswahlgesetz – StandAG).
/content/journals/10.1144/geoenergy2023-018
Loading
/content/journals/10.1144/geoenergy2023-018
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error