1887
Volume 1, Issue 1
  • E-ISSN:

Abstract

The Tellus stream sediment and deep soil geochemistry data sets for Northern Ireland were used to locate four types of critical metals anomalies in granite bedrocks of the Mourne Mountains. A curvi-linear array of Nb, REE, Th and U soil anomalies across the eastern Mourne Mountains correlated with late-stage and eutectic temperature minerals in the roof zone of the most peralkaline F- and volatile-rich granite body, remobilized on micron to millimetre scales. Li, Be, B, As, Sn, Mn and Ce partitioned into pockets of late-stage heterogeneously distributed F-rich silicic residual melts and relatively oxidizing halide-rich magmatic fluids, resulting in drusy mineral and hydrothermal assemblages. Isolated soil anomalies correlated with amorphous Mn- and Ce-rich masses infilling drusy cavities, which resulted from short-distance percolation of small volumes of late-stage magmatic fluids. A significant As plume in stream sediments emanated from a greisen that hosted multiple critical and base metals including Sn, from reactions between large volumes of magmatic As + halide-rich fluids and mafic silicate + diverse accessory minerals on the metre- to kilometre-scale along geological structures. Diverse, small-scale REE anomalies in the soil data along structural features in the western Mournes correlate with vein mineralization resulting from episodic migration of hydrous fluids of variable composition, probably with a much smaller magmatic component than elsewhere. The regional geochemical dataset proved useful to develop a multi-stage model for enrichment of critical metals in the Mourne Mountains granites, which is analogous to the petrogenesis of some of the igneous-hosted economic deposits of critical metals.

This article is part of the energy-critical metals for a low carbon transition collection available at: https://www.lyellcollection.org/topic/collections/critical-metals

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2023-023
2023-12-19
2025-07-20
Loading full text...

Full text loading...

/deliver/fulltext/geoenergy/1/1/geoenergy2023-023.html?itemId=/content/journals/10.1144/geoenergy2023-023&mimeType=html&fmt=ahah

References

  1. Adam, J. and Green, T.2006. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152, 1–17, https://doi.org/10.1007/s00410-006-0085-4
    [Google Scholar]
  2. Alekseev, V.I. and Alekseev, I.V.2020. Zircon as a mineral indicating the stage of granitoid magmatism at Northern Chukotka, Russia. Geosciences (Switzerland), 10, https://doi.org/10.3390/geosciences10050194
    [Google Scholar]
  3. Andersen, J.C.Ø., Rollinson, G.K., Snook, B., Herrington, R. and Fairhurst, R.J.2009. Use of QEMSCAN® for the characterization of Ni-rich and Ni-poor goethite in laterite ores. Minerals Engineering, 22, 1119–1129, https://doi.org/10.1016/j.mineng.2009.03.012
    [Google Scholar]
  4. Arthurs, J.W. and Earls, G.2004. Minerals. In:Mitchell, W.I. (ed.) The Geology of Northern Ireland – Our Natural Foundation, Geological Survey of Northern Ireland, 255–272.
    [Google Scholar]
  5. ASTM-Standard-E15082012. Designation: E1508-12a. Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy, https://doi.org/10.1520/E1508-12A
  6. Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R. and Vigneresse, J.L.2016. Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition. Geology, 44, 231–234, https://doi.org/10.1130/G37475.1
    [Google Scholar]
  7. Ballouard, C., Elburg, M.A., Tappe, S., Reinke, C., Ueckermann, H. and Doggart, S.2020. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa). Ore Geology Reviews, 116, 103252, https://doi.org/10.1016/j.oregeorev.2019.103252
    [Google Scholar]
  8. Banks, G.J., Walter, B.F., Marks, M.A.W. and Siegfried, P.R.2019. A workflow to define, map and name A carbonatite-or alkaline igneous-associated REE-HFSE mineral system: a case study from SW germany. Minerals, 9, https://doi.org/10.3390/min9020097
    [Google Scholar]
  9. Banks, G.J., Olsen, S.D. and Gusak, A.2020. A method to evaluate REE-HFSE mineralised provinces by value creation potential, and an example of application: Gardar REE-HFSE province, Greenland. Geoscience Frontiers, 11, 2141–2156, https://doi.org/10.1016/j.gsf.2020.05.019
    [Google Scholar]
  10. Bastos Neto, A.C., Pereira, V.P., Ronchi, L.H., De Lima, E.F. and Frantz, J.C.2009. The world-class Sn, Nb, Ta, F (Y, REE, Li) Deposit and the massive cryolite associated with the albite-enriched facies of the madeira a-type granite, Pitinga Mining District, Amazonas State, Brazil. Canadian Mineralogist, 47, 1329–1357, https://doi.org/10.3749/canmin.47.6.1329
    [Google Scholar]
  11. Bazley, R.A.B.2004. Chapter 18: Quaternary. In:Mitchell, W.I. (ed.) The Geology of Northern Ireland - Our Natural Foundation, Geological Survey of Northern Ireland, 211–226.
    [Google Scholar]
  12. Bertrand, G., Cassard, D., Arvanitidis, N. and Stanley, G.2016. Map of critical raw material deposits in Europe. Energy Procedia, 97, 44–50, https://doi.org/10.1016/j.egypro.2016.10.016
    [Google Scholar]
  13. BGS2022. UK Criticality Assessment of Technology Critical Minerals and Metals. Decarbonisation & Resource Management Commissioned Report CR/21/120.
    [Google Scholar]
  14. Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. and Buchert, M.2013. Recycling of rare earths: a critical review. Journal of Cleaner Production, 51, 1–22, https://doi.org/10.1016/j.jclepro.2012.12.037
    [Google Scholar]
  15. Bloodworth, A.2014. Track flows to manage technology-metal supply. Nature, 505, 9–10, https://doi.org/10.1038/505019a
    [Google Scholar]
  16. Boily, M. and Williams-Jones, A.E.1994. The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake plutonic complex, Quebec-Labrador. Contributions to Mineralogy and Petrology, 118, 33–47, https://doi.org/10.1007/BF00310609
    [Google Scholar]
  17. Breiter, K., Hložková, M., Korbelová, Z. and Galiová, M.V.2019. Diversity of lithium mica compositions in mineralized granite–greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. Ore Geology Reviews, 106, 12–27, https://doi.org/10.1016/j.oregeorev.2019.01.013
    [Google Scholar]
  18. Chakhmouradian, A.R. and Wall, F.2012. Rare earth elements: minerals, mines, magnets (and more). Elements, 8, 333–340, https://doi.org/10.2113/gselements.8.5.333
    [Google Scholar]
  19. Chakhmouradian, A. and Zaitsev, A.2012. Rare earth mineralisation in igneous rocks: sources and processes. Elements, 8 SRC-G, 347–353, https://doi.org/10.2113/gselements.8.5.347
    [Google Scholar]
  20. Chakhmouradian, A.R., Smith, M.P. and Kynicky, J.2015. From ‘strategic’ tungsten to ‘green’ neodymium: a century of critical metals at a glance. Ore Geology Reviews, 64, 455–458, https://doi.org/10.1016/j.oregeorev.2014.06.008
    [Google Scholar]
  21. Chevychelov, V.Y., Zaraisky, G.P., Borisovskii, S.E. and Borkov, D.A.2005. Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites. Petrology, 13, 305–321.
    [Google Scholar]
  22. Conliffe, J. and Feely, M.2010. Fluid inclusions in Irish granite quartz: monitors of fluids trapped in the onshore Irish Massif. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 101, 53–66, https://doi.org/10.1017/s1755691010009047
    [Google Scholar]
  23. Cooper, M.R., Anderson, H., Walsh, J.J., Van Dam, C.L., Young, M.E., Earls, G. and Walker, A.2012. Palaeogene Alpine tectonics and Icelandic plume-related magmatism and deformation in Northern Ireland. Journal of the Geological Society, 169, 29–36, https://doi.org/10.1144/0016-76492010-182
    [Google Scholar]
  24. Costanzo, A., Moore, K.R., Wall, F. and Feely, M.2006. Fluid inclusions in apatite from Jacupiranga calcite carbonatites: evidence for a fluid-stratified carbonatite magma chamber. Lithos, 91, 208–228, https://doi.org/10.1016/j.lithos.2006.03.047
    [Google Scholar]
  25. Costi, H.T., Dall'Agnol, R., Pichavant, M. and Rämö, O.T.2009. The peralkaline tin-mineralized madeira cryolite albite-rich granite of pitinga, amazonian craton, brazil: Petrography, mineralogy and crystallization processes. Canadian Mineralogist, 47, 1301–1327, https://doi.org/10.3749/canmin.47.6.1301
    [Google Scholar]
  26. Deady, E., Goodenough, K.M. et al.2023. Potential for Critical Raw Material Prospectivity in the UK. Decarbonisation and Resource Management Programme, Commissioned Report CR/23/024.
    [Google Scholar]
  27. Du, X. and Graedel, T.E.2011. Uncovering the global life cycles of the rare earth elements. Scientific Reports, 1, 145, https://doi.org/10.1038/srep00145
    [Google Scholar]
  28. Earls, G.2016. Mineral resources and Tellus: the essential balance. In:Young, M.E. (ed.) Unearthed: Impacts of the Tellus Surveys of the North of Ireland, Royal Irish Academy, Dublin, 67–74, https://doi.org/10.2307/j.ctt1g69w6r.10
    [Google Scholar]
  29. Emeleus, C.H.1955. The granites of the western Mourne Mountains, County Down. Scientific Proceedings of the Royal Dublin Society, 27, 35–50.
    [Google Scholar]
  30. England, R.W.1992. The genesis, ascent, and emplacement of the Northern Arran Granite, Scotland: implications for granitic diapirism. Geological Society of America Bulletin, 104, 606–614, https://doi.org/10.1130/0016-7606(1992)104<0606:TGAAEO>2.3.CO;2
    [Google Scholar]
  31. Ercit, T.S.2005. Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals: a statistical approach. Canadian Mineralogist, 43, 1291–1303, https://doi.org/10.2113/gscanmin.43.4.1291
    [Google Scholar]
  32. Ermolaeva, V.N., Pekov, I.V., Chukanov, N.V. and Zadov, A.E.2007. Thorium mineralization in hyperalkaline pegmatites and hydrothermalites of the Lovozero pluton, Kola Peninsula. Geology of Ore Deposits, 49, 758–775, https://doi.org/10.1134/S1075701507080107
    [Google Scholar]
  33. European Commission2023. Study on the Critical Raw Materials for the EU. Final Report, https://doi.org/10.2873/725585
    [Google Scholar]
  34. Evensen, J.M., London, D. and Wendlandt, R.F.1999. Solubility and stability of beryl in granitic melts. American Mineralogist, 84, 733–745, https://doi.org/10.2138/am-1999-5-605
    [Google Scholar]
  35. Ewing, R.C.1976. A numerical approach toward the classification of complex, orthorhombic, rare-earth, AB2O6–type Nb-Ta-Ti oxides. The Canadian Mineralogist, 14, 111–119.
    [Google Scholar]
  36. Feely, M., McCabe, E. and Kunzendorf, H.1991. The evolution of REE profiles in the Galway Granite Western Ireland. Irish Journal of Earth Sciences, 11, 71–89.
    [Google Scholar]
  37. Gallagher, V., Feely, M., Högelsberger, H., Jenkin, G.R.T. and Fallick, A.E.1992. Geological, fluid inclusion and stable isotope studies of Mo mineralization, Galway Granite, Ireland. Mineralium Deposita, 27, 314–325, https://doi.org/10.1007/BF00193402
    [Google Scholar]
  38. Gamble, J.A., Wysoczanski, R.J. and Meighan, I.G.1999. Constraints on the age of the British Tertiary Volcanic Province from ion microprobe U-Pb (SHRIMP) ages for acid igneous rocks from NE Ireland. Journal of the Geological Society, 156, 291–299, https://doi.org/10.1144/gsjgs.156.2.0291
    [Google Scholar]
  39. Ganerød, M., Chew, D.M., Smethurst, M.A., Troll, V.R., Corfu, F., Meade, F. and Prestvik, T.2011. Geochronology of the Tardree Rhyolite Complex, Northern Ireland: implications for zircon fission track studies, the North Atlantic Igneous Province and the age of the Fish Canyon sanidine standard. Chemical Geology, 286, 222–228, https://doi.org/10.1016/j.chemgeo.2011.05.007
    [Google Scholar]
  40. Ghani, A.A. and Atherton, M.P.2006. The chemical character of the Late Caledonian Donegal Granites, Ireland, with comments on their genesis. Transactions of the Royal Society of Edinburgh, Earth Sciences, 97, 437–454, https://doi.org/10.1017/S0263593300001553
    [Google Scholar]
  41. Ghosh, U., Upadhyay, D., Mishra, B. and Abhinay, K.2023. In-situ trace element and Li-isotope study of zinnwaldite from the Degana tungsten deposit, India: implications for hydrothermal tungsten mineralization. Chemical Geology, 632, 121550, https://doi.org/10.1016/j.chemgeo.2023.121550
    [Google Scholar]
  42. Gibson, D.1984. The Petrology and Geochemistry of the Western Mourne Granites, Co. Down, N. Ireland. PhD thesis, The Queen's University of Belfast.
    [Google Scholar]
  43. Gibson, D., McCormick, A.G., Meighan, I.G. and Halliday, A.N.1987. The British Tertiary Igneous Province: young Rb-Sr ages for the Mourne Mountains Granites. Scottish Journal of Geology, 23, 221–225, https://doi.org/10.1144/sjg23020221
    [Google Scholar]
  44. Gibson, D., Meighan, I.G. and Gamble, J.A.2003. Magmatic pulses in the Western Mourne Tertiary Center, NE Ireland. In:Geological Society of America Northeastern Section 38th Annual Meeting.
    [Google Scholar]
  45. Gillis, K.M. and Roberts, M.D.1999. Cracking at the magma-hydrothermal transition: evidence from the Troodos Ophiolite, Cyprus. Earth and Planetary Science Letters, 169, 227–244, https://doi.org/10.1016/S0012-821X(99)00087-4
    [Google Scholar]
  46. Glasby, G.P., Gwozdz, R., Kunzendorf, H., Friedrich, G. and Thijssen, T.1987. The distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and S.W. Pacific. Lithos, 20, 97–113, https://doi.org/10.1016/0024-4937(87)90001-6
    [Google Scholar]
  47. Godfrey, L.V., Lee, D.-C., Sangrey, W.F., Halliday, A.N., Hein, J.R., White, W.M. and Salters, V.J.M.1997. The Hf isotopic composition of ferromanganese nodules and crusts and hydrothermal manganese deposit: implications for seawater Hf. Earth and Planetary Science Letters, 151, 91–105, https://doi.org/10.1016/S0012-821X(97)00106-4
    [Google Scholar]
  48. Goodenough, K.M., Schilling, J. et al.2016. Europe's rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72, 838–856, https://doi.org/10.1016/j.oregeorev.2015.09.019
    [Google Scholar]
  49. Graedel, T.E., Barr, R. et al.2012. Methodology of metal criticality determination. Environmental Science and Technology, 46, 1063–1070, https://doi.org/10.1021/es203534z
    [Google Scholar]
  50. Graedel, T.E., Gunn, G. and Espinoza, L.T.2014. 1 Metal resources, use and criticality. In: Gunn, G. (ed.) Critical Metals Handbook, John Wiley & Sons, 1–19, https://doi.org/10.1002/9781118755341.ch1
    [Google Scholar]
  51. Graedel, T.E., Harper, E.M., Nassar, N.T., Nuss, P. and Reck, B.K.2015. Criticality of metals and metalloids. Proceedings of the National Academy of Sciences, 112, 4257–4262, https://doi.org/10.1073/pnas.1500415112
    [Google Scholar]
  52. Green, T.H.1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120, 347–359, https://doi.org/10.1016/0009-2541(94)00145-X
    [Google Scholar]
  53. Green, D.I., Bell, R. and Moreton, S.2005. Drusy cavity minerals including the first Irish danalite from Lindsay's Leap, Mourne Mountains. UK Journal of Mines & Minerals, 25, 25–30.
    [Google Scholar]
  54. Haberlah, D., Strong, C., Pirrie, D., Rollinson, G.K., Gottlieb, P., Botha, P.W.S.K. and Butcher, A.R.2011. Automated petrography applications in Quaternary Science. Quaternary Australia, 28, 3–12, http://hdl.handle.net/10072/45844
    [Google Scholar]
  55. Hagelüken, C. and Goldmann, D.2022. Recycling and circular economy – towards a closed loop for metals in emerging clean technologies. Mineral Economics, 35, 539–562, https://doi.org/10.1007/s13563-022-00319-1
    [Google Scholar]
  56. Hansen, J., Jerram, D.A., McCaffrey, K. and Passey, S.R.2009. The onset of the North Atlantic Igneous Province in a rifting perspective. Geological Magazine, 146, 309, https://doi.org/10.1017/S0016756809006347
    [Google Scholar]
  57. Harding, R.R., Merriman, R.J. and Nancarrow, P.H.A.1982. A Note on the Occurrence of chevkinite, allanite and kirkelite on St, Kilda, Scotland. Mineralogical Magazine, 46, 445–448, https://doi.org/10.1180/minmag.1982.046.341.06
    [Google Scholar]
  58. Hayes, S.M. and McCullough, E.A.2018. Critical minerals: a review of elemental trends in comprehensive criticality studies. Resources Policy, 59, 192–199, https://doi.org/10.1016/j.resourpol.2018.06.015
    [Google Scholar]
  59. Hodgson, J. and Young, M.2016. The Tellus airborne geophysical surveys and results. In:Young, M. (ed.) Unearthed: Impacts of the Tellus Surveys of the North of Ireland, Royal Irish Academy, Dublin, 11–31, https://doi.org/10.2307/j.ctt1g69w6r.7
    [Google Scholar]
  60. Hole, M.J. and Millett, J.M.2016. Controls of mantle potential temperature and lithospheric thickness on magmatism in the North Atlantic Igneous Province. Journal of Petrology, 57, 417–436, https://doi.org/10.1093/petrology/egw014
    [Google Scholar]
  61. Honour, V.C., Goodenough, K.M., Shaw, R.A., Gabudianu, I. and Hirtopanu, P.2018. REE mineralisation within the Ditrău Alkaline Complex, Romania: interplay of magmatic and hydrothermal processes. Lithos, 314–315, 360–381, https://doi.org/10.1016/j.lithos.2018.05.029
    [Google Scholar]
  62. Hood, D.N.1981. Geochemical, Petrological and Structural Studies on the Tertiary Granites and Associated Rocks of the Eastern Mourne Mountains, Co. Down, Northern Ireland. PhD thesis, The Queen's University of Belfast.
    [Google Scholar]
  63. Hornig-Kjarsgaard, I.2008. Rare-Earth Elements in Sovitic Carbonatites and their Mineral Phases. Journal of Petrology, 39, 2105–2121, https://doi.org/10.1093/petroj/39.11-12.2105
    [Google Scholar]
  64. Hu, X., Bi, X., Shang, L., Hu, R., Cai, G. and Chen, Y.2009. An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma. Chinese Science Bulletin, 54, 1087–1097, https://doi.org/10.1007/s11434-009-0008-7
    [Google Scholar]
  65. Hughes, H.S.R., Boyce, A.J., McDonald, I., Davidheiser-Kroll, B., Holwell, D.A., McDonald, A. and Oldroyd, A.2015. Contrasting mechanisms for crustal sulphur contamination of mafic magma: evidence from dyke and sill complexes from the British Palaeogene Igneous Province. Journal of the Geological Society, 172, 443–458, https://doi.org/10.1144/jgs2014-112
    [Google Scholar]
  66. Hyslop, E.K., Gillanders, R.J., Hill, P.G. and Fakes, R.D.1999. Rare-earth-bearing minerals fergusonite and gadolinite from the Arran granite. Scottish Journal of Geology, 35, 65–69, https://doi.org/10.1144/sjg35010065
    [Google Scholar]
  67. Johnson, C., Breward, N., Ander, E.L. and Ault, L.2005. G-BASE: baseline geochemical mapping of Great Britain and Northern Ireland. Geochemistry: Exploration, Environment, Analysis, 5, 347–357, https://doi.org/10.1144/1467-7873/05-070
    [Google Scholar]
  68. Jolley, D.W. and Bell, B.R.2002. The evolution of the North Atlantic Igneous Province and the opening of the NE Atlantic rift. Geological Society, London, Special Publications, 197, 1–13, https://doi.org/10.1144/GSL.SP.2002.197.01.01
    [Google Scholar]
  69. Kaeter, D., Barros, R., Menuge, J.F. and Chew, D.M.2018. The magmatic–hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite–tantalite. Geochimica et Cosmochimica Acta, 240, 98–130, https://doi.org/10.1016/j.gca.2018.08.024
    [Google Scholar]
  70. Kamenetsky, V.S., van Achterbergh, E., Ryan, C.G., Naumov, V.B., Mernagh, T.P. and Davidson, P.2002. Extreme chemical heterogeneity of granite-derived hydrothermal fluids: an example from inclusions in a single crystal of miarolitic quartz. Geology, 30, 459–462, https://doi.org/10.1130/0091-7613(2002)030<0459:ECHOGD>2.0.CO;2
    [Google Scholar]
  71. Kent, R.Y.W. and Fitton, J.G.2000. Mantle sources and melting dynamics in the British Palaeogene Igneous Province. Journal of Petrology, 41, 1023–1040, https://doi.org/10.1093/petrology/41.7.1023
    [Google Scholar]
  72. Kügerl, M.T., Hitch, M. and Gugerell, K.2023. Responsible sourcing for energy transitions: discussing academic narratives of responsible sourcing through the lens of natural resources justice. Journal of Environmental Management, 326, 116711, https://doi.org/10.1016/j.jenvman.2022.116711
    [Google Scholar]
  73. Linnen, R.L. and Keppler, H.1997. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust. Contributions to Mineralogy and Petrology, 128, 213–227, https://doi.org/10.1007/s004100050304
    [Google Scholar]
  74. Linnen, R.L., Van Lichtervelde, M. and Černý, P.2012. Granitic pegmatites as sources of strategic metals. Elements, 8, 275–280, https://doi.org/10.2113/gselements.8.4.275
    [Google Scholar]
  75. Liu, X.H., Li, B. et al.2022. Monazite geochronology and geochemistry constraints on the formation of the giant Zhengchong Li-Rb-Cs deposit in South China. Ore Geology Reviews, 150, 105147, https://doi.org/10.1016/j.oregeorev.2022.105147
    [Google Scholar]
  76. Lusty, P.2016. Critical metals for high- technology applications: mineral exploration potential in the north of Ireland. In:Young, M. (ed.) Unearthed: Impacts of the Tellus Surveys of the North of Ireland, Royal Irish Academy, Dublin, 101–117, https://doi.org/j.ctt1g69w6r.13
    [Google Scholar]
  77. Lusty, P.A.J. and Gunn, A.G.2014. Challenges to global mineral resource security and options for future supply. Geological Society, London, Special Publications, 393, 265–276, https://doi.org/10.1144/SP393.13
    [Google Scholar]
  78. MacDonald, R., Baginski, B., Dzierzanqwski, P., Fettes, D.J. and Upton, B.G.J.2013. Chevkinite-group minerals in UK Palaeogene granites: underestimated REE-bearing accessory phases. Canadian Mineralogist, 51, 333–347, https://doi.org/10.3749/canmin.51.2.333
    [Google Scholar]
  79. Mariano, A.N. and Mariano, A., Jr2012. Rare earth mining and exploration in North America. Elements, 8, 369–376, https://doi.org/10.2113/gselements.8.5.369
    [Google Scholar]
  80. Mattsson, T., Burchardt, S., Mair, K. and Place, J.2020. Host-rock deformation during the emplacement of the Mourne Mountains granite pluton: insights from the regional fracture pattern. Geosphere, 16, 182–209, https://doi.org/10.1130/GES02148.1
    [Google Scholar]
  81. McAlister, J.J., Cooney, G. and Higgins, M.J.1997. Accumulation of uranium in granitic soils overlying the Mourne Mountains, County Down, Northern Ireland. Microchemical Journal, 56, 315–326, https://doi.org/10.1006/mchj.1996.1399
    [Google Scholar]
  82. McCabe, M.2008. Glacial Geology and Geomorphology: The Landscapes of Ireland. Dunedin Academic Press.
    [Google Scholar]
  83. McCormick, A.G., Fallick, A.E., Harmon, R.S., Meighan, I.G. and Gibson, D.1993. Oxygen and hydrogen isotope geochemistry of the Mourne Mountains Tertiary granites, Northern Ireland. Journal of Petrology, 34, 1177–1202, https://doi.org/10.1093/petrology/34.6.1177
    [Google Scholar]
  84. Meighan, I.G. and Gamble, J.A.1972. Tertiary acid magmatism in NE Ireland. Nature, 240, 183–184.
    [Google Scholar]
  85. Meighan, I.G., Gibson, D. and Hood, D.N.1984. Some aspects of Tertiary acid magmatism in NE Ireland. Mineralogical Magazine, 48, 351–363, https://doi.org/10.1180/minmag.1984.048.348.05
    [Google Scholar]
  86. Meighan, I.G., McCormick, A.G., Gibson, D., Gamble, J.A. and Graham, I.J.1988. Rb-Sr isotopic determinations and the timing of Tertiary central complex magmatism in NE Ireland. Geological Society, London, Special Publications, 39, 349–360, https://doi.org/10.1144/GSL.SP.1988.039.01.30
    [Google Scholar]
  87. Meighan, I., Fallick, A. and McCormick, A.1992. Anorogenic granite magma genesis: new isotopic data for the southern sector of the British Tertiary Igneous Province. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83, 227–233, https://doi.org/10.1017/S0263593300007914
    [Google Scholar]
  88. Moffett, J.W.1994. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochimica et Cosmochimica Acta, 58, 695–703, https://doi.org/10.1016/0016-7037(94)90499-5
    [Google Scholar]
  89. Moles, N.R. and Higgins, M.J.1995. Uranium distribution and radon potential in the Mournes, Northern Ireland. In:Pašava, J., Kříbek, B. and Žák, K. (eds) Mineral Deposits: From Their Origin to Their Environmental Impacts, Proceedings of the Third Biennial SGA Meeting, Prague, 685–688.
    [Google Scholar]
  90. Moles, N.R. and Tindle, A.G.2011. Alluvial occurrences of fergusonite and gadolinite in the Mourne Mountains, Northern Ireland. Journal of the Russell Society, 14, 1–3.
    [Google Scholar]
  91. Moles, N.R. and Tindle, A.G.2012. Tungsten and bismuth minerals, including russellite, within greisen veins in the western Mourne Mountains, Northern Ireland. Journal of the Russell Society, 15, 40–48.
    [Google Scholar]
  92. Moles, N.R., Chapman, R.J. and Warner, R.B.2013. The significance of copper concentrations in natural gold alloy for reconnaissance exploration and understanding gold-depositing hydrothermal systems. Geochemistry: Exploration, Environment, Analysis, 13, 115–130, https://doi.org/10.1144/geochem2011-114
    [Google Scholar]
  93. Moore, K., Moles, N. and Lusty, P.2016. A natural laboratory for critical metals investigations in the Mourne Mountains granites. In:Young, M. (ed.) Unearthed: Impacts of the Tellus Surveys of the North of Ireland, Royal Irish Academy, Dublin, 119–128, https://doi.org/10.2307/j.ctt1g69w6r.14
    [Google Scholar]
  94. Moss, R.L., Tzimas, E., Kara, H., Willis, P. and Kooroshy, J.2011. Critical metals in strategic energy technologies - Assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies, Joint Research Centre, Institute for Energy and Transport. Publications Office, 2011 https://data.europa.eu/doi/10.2790/35716
    [Google Scholar]
  95. Nockolds, S.R. and Richey, J.E.1939. Replacement veins in the Mourne Mountains Granites, N. Ireland. American Journal of Science, 237, 27–47, https://doi.org/10.2475/ajs.237.1.27
    [Google Scholar]
  96. O'Connor, P.J.1988. Strontium isotope geochemistry of Tertiary igneous rocks, NE Ireland. Geological Society, London, Special Publications, 39, 361–363, https://doi.org/10.1144/GSL.SP.1988.039.01.31
    [Google Scholar]
  97. O'Connor, P.J. and Long, C.B.1985. Radioelement abundance data for some Dalradian rocks from Co. Donegal, Ireland. Mineralogical Magazine, 49, 643–648, https://doi.org/10.1180/minmag.1985.049.354.02
    [Google Scholar]
  98. Pouchou, J.L., Pichoir, F. and Boivin, D.1990. The XPP procedure applied to quantitative EDS X-ray analysis in the SEM. In:Michael, J.R. and Ingram, P. (eds) Microbeam Analysis. San Francisco Press, 120–126.
    [Google Scholar]
  99. Pourret, O., Davranche, M., Gruau, G. and Dia, A.2008. New insights into cerium anomalies in organic-rich alkaline waters. Chemical Geology, 251, 120–127, https://doi.org/10.1016/j.chemgeo.2008.03.002
    [Google Scholar]
  100. Reck, B.K. and Graedel, T.E.2012. Challenges in metal recycling. Science, 337, 690–695, https://doi.org/10.1126/science.1217501
    [Google Scholar]
  101. Richey, J.E.1928. The structural relations of the Mourne granites (Northern Ireland). Quarterly Journal of the Geological Society, 83, 653–688, https://doi.org/10.1144/GSL.JGS.1927.083.01-05.27
    [Google Scholar]
  102. Rollinson, G.K., Andersen, J.C.Ø., Stickland, R.J., Boni, M. and Fairhurst, R.2011. Characterisation of non-sulphide zinc deposits using QEMSCAN. Minerals Engineering, 24, 778–787, https://doi.org/10.1016/j.mineng.2011.02.004
    [Google Scholar]
  103. Salvi, S. and Williams-Jones, A.E.1996. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60, 1917–1932, https://doi.org/10.1016/0016-7037(96)00071-3
    [Google Scholar]
  104. Santoro, L., Boni, M., Rollinson, G.K., Mondillo, N., Balassone, P. and Clegg, A.M.2014. Mineralogical characterization of the Hakkari nonsulfide Zn(Pb) deposit (Turkey): the benefits of QEMSCAN??Minerals Engineering, 69, 29–39, https://doi.org/10.1016/j.mineng.2014.07.002
    [Google Scholar]
  105. Schmidt, C., Romer, R.L., Wohlgemuth-Ueberwasser, C.C. and Appelt, O.2020. Partitioning of Sn and W between granitic melt and aqueous fluid. Ore Geology Reviews, 117, 103263, https://doi.org/10.1016/j.oregeorev.2019.103263
    [Google Scholar]
  106. Seymour, H.J.1903. On the occurrence of cassiterite in Tertiary Granite of the Mourne Mountains. Scientific Proceedings of the Royal Dublin Society, 9, 583–584.
    [Google Scholar]
  107. Shaw, R.A., Goodenough, K.M., Deady, E., Nex, P., Ruzvidzo, B., Rushton, J.C. and Mounteney, I.2022. The magmatic–hydrothermal transition in lithium pegmatites: petrographic and geochemical characteristics of pegmatites from the Kamativi Area, Zimbabwe. Canadian Mineralogist, 60, 957–987, https://doi.org/10.3749/canmin.2100032
    [Google Scholar]
  108. Škoda, R. and Novák, M.2007. Y,REE,Nb,Ta,Ti-oxide (AB2O6) minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends. Lithos, 95, 43–57, https://doi.org/10.1016/j.lithos.2006.07.020
    [Google Scholar]
  109. Smith, M.P., Moore, K., Kavecsánszki, D., Finch, A.A., Kynicky, J. and Wall, F.2016. From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements. Geoscience Frontiers, 7, 315–334, https://doi.org/10.1016/j.gsf.2015.12.006
    [Google Scholar]
  110. Smyth, D.2007. Methods Used in the Tellus Geochemical Mapping of Northern Ireland. British Geological Survey Open Report, OR/07/022.
    [Google Scholar]
  111. Steinbach, V. and Wellmer, F.W.2010. Consumption and use of non-renewable mineral and energy raw materials from an economic geology point of view. Sustainability, 2, 1408–1430, https://doi.org/10.3390/su2051408
    [Google Scholar]
  112. Steiner, B.M.2018. Using Tellus stream sediment geochemistry to fingerprint regional geology and mineralisation systems in Southeast Ireland. Irish Journal of Earth Sciences, 36, 45–61, https://doi.org/10.1353/ijes.2018.0004
    [Google Scholar]
  113. Steiner, B.M.2019. Tools and workflows for grassroots Li-Cs-Ta (LCT) pegmatite exploration. Minerals, 9, 24–26, https://doi.org/10.3390/min9080499
    [Google Scholar]
  114. Stepanov, A.S., Meffre, S., Mavrogenes, J. and Steadman, J.2016. Nb-Ta fractionation in peraluminous granites: a marker of the magmatichydrothermal transition. Geology, 44, e394, https://doi.org/10.1130/G38086C.1
    [Google Scholar]
  115. Stephenson, M.H., Ludden, J. et al..2023. The need for joined-up thinking in critical raw materials research.Geoenergy, 1, geoenergy2023-001, https://doi.org/10.1144/geoenergy2023-001
    [Google Scholar]
  116. Stevenson, C.T.E. and Bennett, N.2011. The emplacement of the Palaeogene Mourne Granite Centres, Northern Ireland: new results from the Western Mourne Centre. Journal of the Geological Society, 168, 831–836, https://doi.org/10.1144/0016-76492010-123
    [Google Scholar]
  117. Stevenson, C.T.E., Owens, W.H., Hutton, D.H.W., Hood, D.N. and Meighan, I.G.2007. Laccolithic, as opposed to cauldron subsidence, emplacement of the Eastern Mourne pluton, N. Ireland: evidence from anisotropy of magnetic susceptibility. Journal of the Geological Society, 164, 99–110, https://doi.org/10.1144/0016076492006-008
    [Google Scholar]
  118. Storey, M., Duncan, R.A. and Tegner, C.2007. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chemical Geology, 241, 264–281, https://doi.org/10.1016/j.chemgeo.2007.01.016
    [Google Scholar]
  119. Stuart, F.M., Ellam, R.M., Harrop, P.J., Fitton, J.G. and Bell, B.R.2000. Constraints on mantle plumes from the helium isotopic composition of basalts from the British Tertiary Igneous Province. Earth and Planetary Science Letters, 177, 273–285, https://doi.org/10.1016/S0012-821X(00)00050-9
    [Google Scholar]
  120. Sun, S.-S. and McDonough, W.F.1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19
    [Google Scholar]
  121. Tammemagi, H.Y.1976. Radioelement concentrations in British Tertiary Granites. Geological Magazine, 113, 271–276, https://doi.org/10.1017/S0016756800043259
    [Google Scholar]
  122. Taylor, R.P. and Pollard, P.J.1996. Rare earth element mineralization in peralkaline systems: the T-Zone REE-Y-Be deposit, Thor Lake, Northwest Territories, Canada. In:Jones, A.P., Wall, F. and Williams, C.T. (eds) Rare Earth Minerals: Chemistry, Origin and Ore Deposits, Springer, 167–192.
    [Google Scholar]
  123. Thomas, R., Davidson, P. and Badanina, E.2009. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems. Mineralogy and Petrology, 96, 129–140, https://doi.org/10.1007/s00710-009-0053-6
    [Google Scholar]
  124. Thompson, P., Mussett, A.E. and Dagley, P.1987. Revised 40 Ar/39Ar age for granites of the Mourne Mountains, Ireland. Scottish Journal of Geology, 23, 215–220, https://doi.org/10.1144/sjg23020215
    [Google Scholar]
  125. Walker, G.P.L.1975. A new concept of the evolution of the British Tertiary intrusive centres. Journal of the Geological Society, 131, 121–141, https://doi.org/10.1144/gsjgs.131.2.0121
    [Google Scholar]
  126. Wall, F., Rollat, A. and Pell, R.S.2017. Responsible Sourcing of Critical Metals. Elements, 13, 313–318, https://doi.org/10.2138/gselements.13.5.313
    [Google Scholar]
  127. Wall, F., Niku-Paavola, V.N., Storey, C., Müller, A. and Jeffries, T.2008. Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: Unusually low LREE:HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon. Canadian Mineralogist, 46, 861–877, https://doi.org/10.3749/canmin.46.4.861
    [Google Scholar]
  128. Walters, A.S., Goodenough, K.M., Hughes, H.S.R., Roberts, N.M.W., Gunn, A.G., Rushton, J. and Lacinska, A.2013. Enrichment of Rare Earth Elements during magmatic and post-magmatic processes: a case study from the Loch Loyal Syenite Complex, northern Scotland. Contributions to Mineralogy and Petrology, 166, 1177–1202, https://doi.org/10.1007/s00410-013-0916-z
    [Google Scholar]
  129. Warner, R., Moles, N. and Chapman, R.2010. Evidence for early bronze age tin and gold extraction in the Mourne Mountains, County Down. Journal of the Mining Heritage Trust of Ireland, 10, 29–36.
    [Google Scholar]
  130. Whitworth, M.P. and Feely, M.2011. The geochemistry of selected pegmatites and their host granites from the Galway Granite, Western Ireland. Irish Journal of Earth Sciences, 10, 89–97, http://www.jstor.org/stable/30002251
    [Google Scholar]
  131. Wilkinson, C.M., Ganerød, M., Hendriks, B.W.H. and Eide, E.A.2017. Compilation and appraisal of geochronological data from the North Atlantic Igneous Province (NAIP). Geological Society of London Special Publications, 447, 69–103, https://doi.org/10.1144/SP447.10
    [Google Scholar]
  132. Williams-Jones, A.E., Migdisov, A.A. and Samson, I.M.2012. Hydrothermal mobilisation of the rare earth elements-a tale of ‘ceria’ and ‘yttria’. Elements, 8, 355–360, https://doi.org/10.2113/gselements.8.5.355
    [Google Scholar]
  133. Wilson, K.R.2004. The last glaciation in the Western Mourne Mountains, Northern Ireland. Scottish Geographical Journal, 120, 199–210, https://doi.org/10.1080/00369220418737203
    [Google Scholar]
  134. Young, M.2016. The Tellus geoscience surveys of the north of Ireland: context, delivery and impacts. In:Young, M. (ed.) Unearthed: Impacts of the Tellus Surveys of the North of Ireland, 3–10, https://doi.org/10.2307/j.ctt1g69w6r.6
    [Google Scholar]
  135. Young, M., Knights, K., Smyth, D., Scanlon, R. and Gallagher, V.2016. The Tellus geochemical surveys, results and applications. In:Young, M. (ed.) Unearthed: Impacts of the Tellus Surveys of the North of Ireland, Royal Irish Academy, Dublin, 33–52, https://doi.org/10.2307/j.ctt1g69w6r.8
    [Google Scholar]
  136. Yu, C., Drake, H., Mathurin, F.A. and Åström, M.E.2017. Cerium sequestration and accumulation in fractured crystalline bedrock: the role of Mn-Fe (hydr-)oxides and clay minerals. Geochimica et Cosmochimica Acta, 199, 370–389, https://doi.org/10.1016/j.gca.2016.11.044
    [Google Scholar]
  137. Zhao, P., Zajacz, Z., Tsay, A. and Yuan, S.2022. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochimica et Cosmochimica Acta, 316, 331–346, https://doi.org/10.1016/j.gca.2021.09.011
    [Google Scholar]
/content/journals/10.1144/geoenergy2023-023
Loading
/content/journals/10.1144/geoenergy2023-023
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error