1887
Volume 2, Issue 1
  • E-ISSN:

Abstract

Hydrogen (H) emanations have been recognized in the south and north of the Pyrenees fold belt, within its two forelands. The proposed source is a mantle wedge quite close to the surface that is currently undergoing serpentinization. The migration pathway seems to be the deep rooting faults, as the H content is higher where the faults reach the surface. The zone of current H generation is around 10 km deep. It is evident from filed observations that kilometric pieces of mantle have been incorporated into the thrusts and outcrop in a few areas along the mountain belt. We studied the Turon de Tecouère, one of these mantle-derived bodies, using various field and laboratory tools that focused on the characterization of its alteration, the degree of serpentinization and its heterogeneity at the kilometre scale. Accordingly, the magnetic field and magnetic susceptibility were mapped, classical optical observations and 3D scans of some samples were performed, and H soil gas content mapping was carried out. The results show a heterogenous degree of serpentinization ranging from 3 to 62% at the kilometre to the micrometre scale. As the temperature and burial history are the same throughout the Turon de Tecouère, these factors were not sufficient to characterize the level of transformation in the H-generating rock. The soil gas measurements show current H emanations in and around the Turon de Tecouère. Near-surface H production of this mantle body is unlikely, based on the current knowledge of H generation kinetics. To explain these emanations, we favour a preferential migration pathway within the root of the Turon and the surrounding faults.

This article is part of the Hydrogen as a future energy source collection available at: https://www.lyellcollection.org/topic/collections/hydrogen

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2023-024
2024-02-05
2025-01-25
Loading full text...

Full text loading...

References

  1. Andreani, M., Mével, C., Boullier, A.M. and Escartín, J. 2007. Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems, 8, Q02012, https://doi.org/10.1029/2006GC001373
    [Google Scholar]
  2. Azambre, B. and Rossy, M. 1976. Le magmatisme alcalin d'age cretace, dans les Pyrenees occidentales et l'Arc Basque; ses relations avec le metamorphisme et la tectonique. Bulletin de la Societe Geologique de France, S7-XVIII, 1725–1728, https://doi.org/10.2113/gssgfbull.S7-XVIII.6.1725
    [Google Scholar]
  3. Azambre, B., Rossy, M. and Lago, M. 1987. Caracteristiques petrologiques des dolerites tholeiitiques d'age triasique (ophites) du domaine pyreneen. Bulletin de Mineralogie, 110, 379–396, https://doi.org/10.3406/bulmi.1987.8035
    [Google Scholar]
  4. Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P., Humphris, S.E. et al..2006. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophysical Research Letters, 33, L13306, https://doi.org/10.1029/2006GL025681
    [Google Scholar]
  5. Barbier, S., Huang, F. et al.2020. A review of H2, CH4, and hydrocarbon formation in experimental serpentinization using network analysis. Frontiers in Earth Science, 8, https://doi.org/10.3389/feart.2020.00209
    [Google Scholar]
  6. Bonnemains, D., Carlut, J., Escartín, J., Mével, C., Andreani, M. and Debret, B. 2016. Magnetic signatures of serpentinization at ophiolite complexes. Geochemistry, Geophysics, Geosystems, 17, 2969–2986, https://doi.org/10.1002/2016GC006321
    [Google Scholar]
  7. Bruneau, B., Chauveau, B., Baudin, F. and Moretti, I. 2017. 3D stratigraphic forward numerical modelling approach for prediction of organic-rich deposits and their heterogeneities. Marine and Petroleum Geology, 82, 1–20, https://doi.org/10.1016/j.marpetgeo.2017.01.018
    [Google Scholar]
  8. Canérot, J., Hudec, M.R. and Rockenbauch, K. 2005. Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. AAPG Bulletin, 89, 211–229, https://doi.org/10.1306/09170404007
    [Google Scholar]
  9. Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P. and Holm, N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology, 191, 345–359, https://doi.org/10.1016/s0009-2541(02)00134-1
    [Google Scholar]
  10. Chen, H., Tao, C., Revil, A., Zhu, Z., Zhou, J., Wu, T. and Deng, X. 2021. Induced Polarization and magnetic responses of serpentinized ultramafic rocks from mid-ocean ridges. Journal of Geophysical Research: Solid Earth, 126, https://doi.org/10.1029/2021JB022915
    [Google Scholar]
  11. Chevrot, S., Sylvander, M. et al.2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports, 8, 9591, https://doi.org/10.1038/s41598-018-27889-x
    [Google Scholar]
  12. Chevrot, S., Sylvander, M. et al.2022. Passive imaging of collisional orogens: a review of a decade of geophysical studies in the Pyrénées. BSGF – Earth Sciences Bulletin, 193, https://doi.org/10.1051/bsgf/2021049
    [Google Scholar]
  13. Clerc, C. and Lagabrielle, Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: insights from the cretaceous pyrenean hot paleomargins. Tectonics, 33, 1340–1359, https://doi.org/10.1002/2013TC003471
    [Google Scholar]
  14. Clerc, C., Lagabrielle, Y., Neumaier, M., Reynaud, J.-Y. and de Saint Blanquat, M.2012. Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bulletin de la Société Géologique de France, 183, 443–459, https://doi.org/10.2113/gssgfbull.183.5.443
    [Google Scholar]
  15. Clerc, C., Boulvais, P., Lagabrielle, Y., De, M., De Saint, M. and Ophicalcites, B. 2014. Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study. Journal of Earth Sciences, 21, 141–163, https://doi.org/10.1007/s00531-013
    [Google Scholar]
  16. Clerc, C., Lahfid, A. et al.2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth, 6, 643–668, https://doi.org/10.5194/se-6-643-2015
    [Google Scholar]
  17. Cochelin, B., Chardon, D., Denèle, Y., Gumiaux, C. and Le Bayon, B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. Bulletin de la Societe Geologique de France, 188, https://doi.org/10.1051/bsgf/2017206
    [Google Scholar]
  18. Combaudon, V., Moretti, I., Kleine, B.I. and Stefánsson, A. 2022. Hydrogen emissions from hydrothermal fields in Iceland and comparison with the Mid-Atlantic Ridge. International Journal of Hydrogen Energy, 47, 10 217–10 227, https://doi.org/10.1016/j.ijhydene.2022.01.101
    [Google Scholar]
  19. Corre, B.2017. La bordure nord de la plaque ibérique à l'Albo-Cénomanien. Architecture d'une marge passive de type ductile (Chaînons Béarnais, Pyrénées Occidentales). Doctoral thesis, Universitéde Rennes 1, Rennes, France.
    [Google Scholar]
  20. Diallo, A., Cissé, C.S.T., Lemay, J. and Brière, D.J.2022. La découverte de l'hydrogène naturel par Hydroma, un «Game Changer» pour la transition énergétique. Annales des Mines – Réalités industrielles, 2022, 154–160, https://doi.org/10.3917/rindu1.224.0154
    [Google Scholar]
  21. Ducoux, M., Jolivet, L. et al.2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The tectono-thermal evolution of a fossil hyperextended rift basin. Tectonics, 38, 3881–3915, https://doi.org/10.1029/2018TC005348
    [Google Scholar]
  22. Dunlop, D.J. and Özdemir, Ö.1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  23. Fabriès, J., Lorand, J.-P. and Bodinier, J.-L. 1998. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics, 292, 145–167, https://doi.org/10.1016/S0040-1951(98)00055-9
    [Google Scholar]
  24. Ferré, E.C., Kupenko, I., Martín-Hernández, F., Ravat, D. and Sanchez-Valle, C.2021. Magnetic sources in the Earth's mantle. Nature Reviews Earth & Environment, 2, 59–69, https://doi.org/10.1038/s43017-020-00107-x
    [Google Scholar]
  25. Fujii, M., Okino, K., Sato, H., Nakamura, K., Sato, T. and Yamazaki, T. 2016. Variation in magnetic properties of serpentinized peridotites exposed on the Yokoniwa Rise, Central Indian Ridge: Insights into the role of magnetite in serpentinization. Geochemistry, Geophysics, Geosystems, 17, 5024–5035, https://doi.org/10.1002/2016GC006511
    [Google Scholar]
  26. Geymond, U., Briolet, T., Combaudon, V., Sissmann, O., Martinez, I., Duttine, M. and Moretti, I. 2023. Reassessing the role of magnetite during natural hydrogen generation. Frontiers in Earth Science, 11, https://doi.org/10.3389/feart.2023.1169356
    [Google Scholar]
  27. Halas, P., Dupuy, A., Franceschi, M., Bordmann, V., Fleury, J.M. and Duclerc, D. 2021. Hydrogen gas in circular depressions in South Gironde, France: Flux, stock, or artefact?Applied Geochemistry, 127, 104928, https://doi.org/10.1016/j.apgeochem.2021.104928
    [Google Scholar]
  28. Horsfield, B., Mahlstedt, N., Weniger, P., Misch, D., Vranjes-Wessely, S., Han, S. and Wang, C. 2022. Molecular hydrogen from organic sources in the deep Songliao Basin, P.R. China. International Journal of Hydrogen Energy, 47, 16 750–16 774, https://doi.org/10.1016/j.ijhydene.2022.02.208
    [Google Scholar]
  29. Jelinek, V.1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63–67, https://doi.org/10.1016/0040-1951(81)90110-4
    [Google Scholar]
  30. Jammes, S., Manatschal, G., Lavier, L. and Masini, E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 28, TC4012, https://doi.org/10.1029/2008TC002406
    [Google Scholar]
  31. Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B. and Berquó, T. 2009. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 73, 6868–6893, https://doi.org/10.1016/j.gca.2009.08.021
    [Google Scholar]
  32. Klein, F., Tarnas, J.D. and Bach, W. 2020. Abiotic sources of molecular hydrogen on Earth. Elements, 16, 19–24, https://doi.org/10.2138/gselements.16.1.19
    [Google Scholar]
  33. Knafelc, J., Filiberto, J. et al.2019. The effect of oxidation on the mineralogy and magnetic properties of olivine. American Mineralogist, 104, 694–702, https://doi.org/10.2138/am-2019-6829
    [Google Scholar]
  34. Labaume, P. and Teixell, A. 2020. Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): From hyper-extension to tectonic inversion. Tectonophysics, 785, 228451, https://doi.org/10.1016/j.tecto.2020.228451
    [Google Scholar]
  35. Lacan, P., Nivière, B., Rousset, D. and Sénéchal, P. 2012. Late Pleistocene folding above the Mail Arrouy Thrust, North-Western Pyrenees (France). Tectonophysics, 541–543, 57–68, https://doi.org/10.1016/j.tecto.2012.03.022
    [Google Scholar]
  36. Lagabrielle, Y. and Bodinier, J.L. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova, 20, 11–21, https://doi.org/10.1111/j.1365-3121.2007.00781.x
    [Google Scholar]
  37. Lagabrielle, Y., Labaume, P. and De Saint Blanquat, M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics, 29, TC4012, https://doi.org/10.1029/2009TC002588
    [Google Scholar]
  38. Lagabrielle, Y., Clerc, C. et al.2016. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). Comptes Rendus Geoscience, 348, 290–300, https://doi.org/10.1016/j.crte.2015.11.004
    [Google Scholar]
  39. Lagabrielle, Y., Asti, R. et al.2019. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France). BSGF – Earth Sciences Bulletin, 190, https://doi.org/10.1051/bsgf/2019007
    [Google Scholar]
  40. Lefeuvre, N., Truche, L. et al.2021. Native H2 exploration in the Western Pyrenean Foothills. Geochemistry, Geophysics, Geosystems, 22, e2021GC009917, https://doi.org/10.1029/2021GC009917
    [Google Scholar]
  41. Lefeuvre, N., Truche, L. et al.2022. Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study. Applied Geochemistry, 145, 105396, https://doi.org/10.1016/j.apgeochem.2022.105396
    [Google Scholar]
  42. Lescoutre, R., Tugend, J., Brune, S., Masini, E. and Manatschal, G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: results from numerical modeling and pyrenean field observations. Geochemistry, Geophysics, Geosystems, 20, 4567–4587, https://doi.org/10.1029/2019GC008600
    [Google Scholar]
  43. Lévy, D., Roche, V., Pasquet, G., Combaudon, V., Geymond, U., Loiseau, K. and Moretti, I. 2023. Natural H2 exploration: tools and workflows to characterize a play. Science and Technology for Energy Transition, 78, 27, https://doi.org/10.2516/stet/2023021
    [Google Scholar]
  44. Mahlstedt, N., Horsfield, B., Weniger, P., Misch, D., Shi, X., Noah, M. and Boreham, C. 2022. Molecular hydrogen from organic sources in geological systems. Journal of Natural Gas Science and Engineering, 105, 104704, https://doi.org/10.1016/j.jngse.2022.104704
    [Google Scholar]
  45. Malvoisin, B., Carlut, J. and Brunet, F. 2012. Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments. Journal of Geophysical Research: Solid Earth, 117, https://doi.org/10.1029/2011JB008612
    [Google Scholar]
  46. Masini, E., Manatschal, G., Tugend, J., Mohn, G. and Flament, J.M. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq–Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences, 103, 1569–1596, https://doi.org/10.1007/s00531-014-1023-8
    [Google Scholar]
  47. Miller, D.J. and Christensen, N.I. 1997. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane transform zone (MARK). In: Karson, J.A., Cannat, M., Miller, D.J. and Elthon, D. (eds) Proceedings of the Ocean Drilling Program: Scientific Results, Volume 153. Ocean Drilling Program, College Station, TX, 437–454.
    [Google Scholar]
  48. Moretti, I. 2019. H2: energy vector or source?Actualite Chimique, 442, 15–16.
    [Google Scholar]
  49. Moretti, I., Brouilly, E., Loiseau, K., Prinzhofer, A. and Deville, E. 2021. Hydrogen emanations in intracratonic areas: new guide lines for early exploration basin screening. Geosciences, 11, 145, https://doi.org/10.3390/geosciences11030145
    [Google Scholar]
  50. Mouthereau, F., Filleaudeau, P.Y. et al.2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics, 33, 2283–2314, https://doi.org/10.1002/2014TC003663
    [Google Scholar]
  51. Muñoz, J.A. 1992. Evolution of a continental collision belt: ECORS–Pyrenees crustal balanced cross-section. In: McClay, K.R. (ed.) Thrust Tectonics. Springer, Dordrecht, The Netherlands, 235–246, https://doi.org/10.1007/978-94-011-3066-0_21
    [Google Scholar]
  52. Newman, J. and Drury, M.R. 2010. Control of shear zone location and thickness by initial grain size variations in upper mantle peridotites. Journal of Structural Geology, 32, 832–842, https://doi.org/10.1016/j.jsg.2010.06.001
    [Google Scholar]
  53. Newman, J., Chatzaras, V., Tikoff, B., Wijbrans, J.R., Lamb, W.M. and Drury, M.R. 2021. Strain localization at constant strain rate and changing stress conditions: implications for plate boundary processes in the upper mantle. Minerals, 11, https://doi.org/10.3390/min11121351
    [Google Scholar]
  54. O'Reilly, W.1984. Rock and Mineral Magnetism. Blackie, Glasgow, UK, https://doi.org/10.1007/978-1-4684-8468-7
    [Google Scholar]
  55. Ortiz, A., Guillocheau, F., Lasseur, E., Briais, J., Robin, C., Serrano, O. and Fillon, C. 2020. Sediment routing system and sink preservation during the post-orogenic evolution of a retro-foreland basin: the case example of the North Pyrenean (Aquitaine, Bay of Biscay) Basins. Marine and Petroleum Geology, 112, 104085, https://doi.org/10.1016/j.marpetgeo.2019.104085
    [Google Scholar]
  56. Oufi, O. and Cannat, M. 2002. Magnetic properties of variably serpentinized abyssal peridotites. Journal of Geophysical Research: Solid Earth, 107, EPM 3-1–EPM 3-19, https://doi.org/10.1029/2001jb000549
    [Google Scholar]
  57. Pasquet, G., Hassan, R.H., Sissmann, O., Varet, J. and Moretti, I. 2022. An attempt to study natural H2 resources across an oceanic ridge penetrating a continent: the Asal–Ghoubbet Rift (Republic of Djibouti). Geosciences, 12, 16, https://doi.org/10.3390/geosciences12010016
    [Google Scholar]
  58. Pasquet, G., Mohamed Idriss, A. et al.2023. Natural hydrogen potential and basaltic alteration in the Asal-Ghoubbet rift, Republic of Djibouti. BSGF – Earth Sciences Bulletin, 194, https://doi.org/10.1051/bsgf/2023004
    [Google Scholar]
  59. Pearce, C.I., Pattrick, R.A.D. and Vaughan, D.J. 2006. Electrical and magnetic properties of sulfides. Reviews in Mineralogy and Geochemistry, 61, 127–180, https://doi.org/10.2138/rmg.2006.61.3
    [Google Scholar]
  60. Prinzhofer, A. and Deville, É.2015. L'hydrogène naturel: La prochaine révolution energétique?Éditions Belin, Paris.
    [Google Scholar]
  61. Prinzhofer, A., Tahara Cissé, C.S. and Diallo, A.B. 2018. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43, 19 315–19 326, https://doi.org/10.1016/j.ijhydene.2018.08.193
    [Google Scholar]
  62. Rochette, P. 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology, 9, 1015–1020, https://doi.org/10.1016/0191-8141(87)90009-5
    [Google Scholar]
  63. Rossy, M., Azambre, B. and Albarbde, F. 1992. REE and Sr–Nd isotope geochemistry of the alkaline magmatism from the Cretaceous North Pyrenean Rift Zone (France–Spain). Chemical Geology, 97, 33–46, https://doi.org/10.1016/0009-2541(92)90134-Q
    [Google Scholar]
  64. Rougier, G., Ford, M., Christophoul, F. and Bader, A.G. 2016. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: constraints on the subsidence and deformation history of a retro-foreland basin. Comptes Rendus Geoscience, 348, 224–235, https://doi.org/10.1016/j.crte.2015.12.005
    [Google Scholar]
  65. Saur, H.2022. Microstructure investigation by means of X-ray computed tomography: application to fine-grained clastic rocks. Thesis, Université de Pau et des Pays de l'Adour.
    [Google Scholar]
  66. Seyfried, W.E., Foustoukos, D.I. and Fu, Q. 2007. Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200°C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 71, 3872–3886, https://doi.org/10.1016/j.gca.2007.05.015
    [Google Scholar]
  67. Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M. and Lagabrielle, Y. 2018. Crustal structure and evolution of the Pyrenean–Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics, 724–725, 146–170, https://doi.org/10.1016/j.tecto.2018.01.009
    [Google Scholar]
  68. Tichadou, C.2021. Etude des processus de serpentinisation et de production d'hydrogène dans la zone Nord-Pyrénéenne occidentale: du terrain à la caractérisation expérimentale. Doctoral thesis, Université de Montpellier, Montpellier, France, https://tel.archives-ouvertes.fr/tel-03374351
    [Google Scholar]
  69. Tichadou, C., Godard, M., Muñoz, M., Labaume, P., Vauchez, A., Gaucher, E.C. and Calassou, S. 2021. Mineralogical and geochemical study of serpentinized peridotites from the North-Western Pyrenees: New insights on serpentinization along magma-poor continental passive margins. Lithos, 406–407, 106521, https://doi.org/10.1016/j.lithos.2021.106521
    [Google Scholar]
  70. Toft, P.B., Arkani-Hamed, J. and Haggerty, S.E. 1990. The effects of serpentinization on density and magnetic susceptibility: a petrophysical model. Physics of the Earth and Planetary Interiors, 65, 137–157, https://doi.org/10.1016/0031-9201(90)90082-9
    [Google Scholar]
  71. Tugend, J., Manatschal, G., Kusznir, N.J., Masini, E., Mohn, G. and Thinon, I. 2014. Formation and deformation of hyperextended rift systems: insights from rift domain mapping in the Bay of Biscay–Pyrenees. Tectonics, 33, 1239–1276, https://doi.org/10.1002/2014TC003529
    [Google Scholar]
  72. Vacquand, C., Deville, E. et al.2018. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2–CH4–N2 gas mixtures. Geochimica et Cosmochimica Acta, 223, 437–461, https://doi.org/10.1016/j.gca.2017.12.018
    [Google Scholar]
  73. Vissers, R.L.M., Drury, M.R., Newman, J. and Fliervoet, T.E. 1997. Mylonitic deformation in upper mantle peridotites of the North Pyrenean Zone (France): implications for strength and strain localization in the lithosphere. Tectonophysics, 279, 303–325, https://doi.org/10.1016/S0040-1951(97)00128-5
    [Google Scholar]
  74. Zgonnik, V. 2020. The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth-Science Reviews, 203, 103140, https://doi.org/10.1016/j.earscirev.2020.103140
    [Google Scholar]
/content/journals/10.1144/geoenergy2023-024
Loading
/content/journals/10.1144/geoenergy2023-024
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error