1887
Volume 1, Issue 1
  • E-ISSN:
PDF

Abstract

The North Alpine Foreland Basin in SE Germany is a post-mature petroleum basin and today Germany's most prolific deep geothermal energy play. Drilling of deep wells is often challenged by the complex pore pressure distribution, which has been studied in the past, but quality and reliability of individual pore pressure measurements and indicators have so far been barely addressed. This is particularly critical, since most datasets originate from old hydrocarbon wells and often display limited availability and poor quality. This paper analyses pore pressure measurements and indicators from 315 deep hydrocarbon and geothermal wells. The dataset covers pressure measurements, drilling mud weights, caliper logs, drilling events and gas readings. A large number of pressure measurements are exposed to uncertainties, resulting predominantly from incomplete pressure build-ups. In addition, investigation of drilling mud weights combined with wellbore instabilities, gas readings and pore pressure-related drilling problems suggest that many wells were subject to underbalanced drilling and mud weight alone is not a reliable pore pressure indicator. The study provides a recommendation for pre-drill pore pressure prediction based on the investigated datasets, which also presents a reference case for other post-mature petroleum basins transitioning to new industries, such as deep geothermal.

This article is part of the Earth as a thermal battery: future directions in subsurface thermal energy storage systems collection available at: https://www.lyellcollection.org/topic/collections/thermal-energy

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2023-038
2023-12-18
2025-05-23
Loading full text...

Full text loading...

/deliver/fulltext/geoenergy/1/1/geoenergy2023-038.html?itemId=/content/journals/10.1144/geoenergy2023-038&mimeType=html&fmt=ahah

References

  1. Agemar, T., Weber, J. and Schulz, R.2014. Deep geothermal energy production in Germany. Energies, 7, 4397–4416, https://doi.org/10.3390/en7074397
    [Google Scholar]
  2. Alberty, M. and Fink, K.2014. The use of connection and total gases quantitatively in the assessment of shale pore pressure. SPE Drilling and Completion, 29, 208–214, https://doi.org/10.2118/166188-PA
    [Google Scholar]
  3. Bachmann, G.H. and Müller, M.1996. Die Entwicklung des süddeutschen Molassebeckens seit dem Variszikum: Eine Einführung. Zeitschrift für Geologische Wissenschaften, 24, 3–20.
    [Google Scholar]
  4. Bachmann, G.H., Koch, K., Müller, M. and Weggen, K.1981. Ergebnisse und Erfahrungen bei der Exploration in den Bayerischen Alpen. Erdoel-Erdgas-Zeitschrift, 97, 127–133.
    [Google Scholar]
  5. Bachmann, G.H., Müller, M. and Weggen, K.1987. Evolution of the Molasse Basin (Germany, Switzerland). Tectonophysics, 137, 77–92, https://doi.org/10.1016/0040-1951(87)90315-5
    [Google Scholar]
  6. Black, W.M.1956. A review of drill-stem testing techniques and analysis. Journal of Petroleum Technology, SPE 589-G, 21–30, https://doi.org/10.2118/589-G
    [Google Scholar]
  7. Bredehoeft, J.D.1965. The drill-stem test: the petroleum industry's deep-well pumping test. Groundwater, 3, 31–36, https://doi.org/10.1111/j.1745-6584.1965.tb01218.x
    [Google Scholar]
  8. Brown, A.2003. Improved interpretation of wireline pressure data. AAPG Bulletin, 87, 295–311, https://doi.org/10.1306/08010201127
    [Google Scholar]
  9. BVG2023. Tiefe Geothermie-Projekte in Deutschland 2023/24, https://www.geothermie.de/fileadmin/user_upload/Aktuelles/BVG_Poster_Tiefe_Geothermie_2023_24_web.pdf
  10. Dake, L.P.1978. Fundamentals of Reservoir Engineering. Elsevier Scientific Publishing Company, Amsterdam.
    [Google Scholar]
  11. Dolan, J.P., Einarsen, C.A. and Hill, G.A.1957. Special applications of drill-stem test pressure data. Petroleum Transactions, SPE 851-G, 318–324, https://doi.org/10.2118/851-G
    [Google Scholar]
  12. Dorsch, K., Lentsch, D., Niederseer, C. and Götz, A.2021. The deep hydrogeothermal project in Holzkirchen, Molasse Basin, Germany. World Geothermal Congress 2020+1, April–October 2021, Reykjavik, Iceland.
    [Google Scholar]
  13. Drews, M.C. and Duschl, F.2022. Overpressure, vertical stress, compaction and horizontal loading along the North Alpine Thrust Front, SE Germany. Marine and Petroleum Geology, 143, https://doi.org/10.1016/j.marpetgeo.2022.105806
    [Google Scholar]
  14. Drews, M.C., Bauer, W., Caracciolo, L. and Stollhofen, H.2018. Disequilibrium compaction overpressure in shales of the Bavarian Foreland Molasse Basin: results and geographical distribution from velocity-based analyses. Marine and Petroleum Geology, 92, 37–50, https://doi.org/10.1016/j.marpetgeo.2018.02.017
    [Google Scholar]
  15. Drews, M.C., Hofstettter, P., Zosseder, K., Shipilin, V. and Stollhofen, H.2020. Predictability and mechanisms of overpressure in the Bavarian Foreland Molasse Basin: an integrated analysis of the Geretsried GEN-1 Deep Geothermal Well. Geothermal Energy, 8, 20, https://doi.org/10.1186/s40517-020-00175-8
    [Google Scholar]
  16. Drews, M.C., Shatyrbayeva, I. et al.2022. The role of pore pressure and its prediction in deep geothermal energy drilling – examples from the North Alpine Foreland Basin, SE Germany. Petroleum Geoscience, 28, petgeo2021-060, https://doi.org/10.1144/petgeo2021-060
    [Google Scholar]
  17. Fjaer, E., Holt, R.M., Horsrud, P., Raaen, A.M. and Risnes, R.2008. Petroleum Related Rock Mechanics. 2nd edn. Elsevier.
    [Google Scholar]
  18. Flechtner, F. and Aubele, K.2019. A brief stock take of the deep geothermal projects in Bavaria, Germany (2018). Paper SGP-TR-214,Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, 11–13 February 2019, Stanford University, Stanford, California.
    [Google Scholar]
  19. Flemings, P.B.2021. A Concise Guide to Geopressure - Origin, Prediction, and Applications. Cambridge University Press.
    [Google Scholar]
  20. Grant, R. and Gill, H.1995. How to increase the reliability of your open hole drill-stem test analyses?. 46th Annual Technical Meeting, June 1995, Calgary, Alberta.
    [Google Scholar]
  21. Heidbach, O., Rajabi, M. et al.2018. The World Stress Map database release 2016: crustal stress pattern across scales. Tectonophysics, 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007
    [Google Scholar]
  22. Hortle, A., Otto, C. and Underschultz, J.2013. A quality control system to reduce uncertainty in interpreting formation pressures for reservoir and basin pressure system analysis. Journal of Petroleum Geology, 36, 163–177, https://doi.org/10.1111/jpg.12549
    [Google Scholar]
  23. Lackner, D., Lentsch, D. and Dorsch, K.2018. Germany's deepest hydro-geothermal doublet, drilling challenges and conclusions for the design of future wells. Transactions - Geothermal Resources Council, 42, 349–359.
    [Google Scholar]
  24. Lee, J., Swarbrick, R. and O'connor, S.2022. Kicks and their significance in pore pressure prediction. Petroleum Geoscience, 28, petgeo2021-061, https://doi.org/10.1144/petgeo2021-061
    [Google Scholar]
  25. Lemcke, K.1979. Dreissig Jahre Oel- und Gassuche im süddeutschen Alpenvorland. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 61, 305–317, https://doi.org/10.1127/jmogv/61/1979/305
    [Google Scholar]
  26. Lentsch, D., Dorsch, K., Sonnleitner, N. and Schubert, A.2015. Prevention of casing failures in ultra-deep geothermal wells (Germany). Proceedings World Geothermal Congress 2015, 19–25 April 2015, Melbourne, Australia.
    [Google Scholar]
  27. Lohr, J.1969. Die seismischen Geschwindigkeiten der jüngeren Molasse im ostschweizerischen und deutschen Alpenvorland. Geophysical Prospecting, 17, 111–125, https://doi.org/10.1111/j.1365-2478.1969.tb02075.x
    [Google Scholar]
  28. Lohr, J.1978. Alpine stress documented by anomalous seismic velocities in the Molasse trough. Inter-Union Commission on Geodynamics Scientific Report, 38, 69–71.
    [Google Scholar]
  29. Lüschen, E., Borrini, D., Gebrande, H., Lammerer, B., Millahn, K., Neubauer, F. and Nicolich, R.2006. TRANSALP - deep crustal Vibroseis and explosive seismic profiling in the Eastern Alps. Tectonophysics, 414, 9–38, https://doi.org/10.1016/j.tecto.2005.10.014
    [Google Scholar]
  30. Morawietz, S., Heidbach, O. et al.2020. An open-access stress magnitude database for Germany and adjacent regions. Geothermal Energy, 8, https://doi.org/10.1186/s40517-020-00178-5
    [Google Scholar]
  31. Mouchet, J.-P. and Mitchell, A.1989. Abnormal Pressures While Drilling: Origins, Predictions, Detection Evaluation. Editions Technip, Paris, France.
    [Google Scholar]
  32. Müller, M., Nieberding, F. and Wanninger, A.1988. Tectonic style and pressure distribution at the northern margin of the Alps between Lake Constance and the River Inn. Geologische Rundschau, 77, 787–796, https://doi.org/10.1007/BF01830185
    [Google Scholar]
  33. Osborne, M.J. and Swarbrick, R.E.1997. Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bulletin, 81, 1023–1041.
    [Google Scholar]
  34. Pasternak, M.2011. Exploration and production of crude oil and natural gas in Germany in 2010. Erdöl Erdgas Kohle, 127, 272–286.
    [Google Scholar]
  35. Pfiffner, O.A.1986. Evolution of the north Alpine foreland basin in the Central Alps. Foreland Basins, 8, 219–228, https://doi.org/10.1002/9781444303810.ch11
    [Google Scholar]
  36. Pletl, C., Angerer, J., Graf, R., Stoyke, R. and Toll, H.2010. Bohrerfahrungen bei Deutschlands größtem Geothermieprojekt. bbr - Leitungsbau, Brunnenbau, Geothermie, 3, 38–47.
    [Google Scholar]
  37. Proett, M.A. and Chin, W.C.1996. Supercharge pressure compensation with new wireline formation testing method. 37th Annual Logging Symposium, June 1996, New Orleans, Louisiana SPWLA-1996-Z.
    [Google Scholar]
  38. Proett, M.A., Waid, M.C. and Chin, W.C.1997. Wireline Formation Tester Supercharge Correction Method. United States.
    [Google Scholar]
  39. Reinecker, J., Tingay, M., Müller, B. and Heidbach, O.2010. Present-day stress orientation in the Molasse Basin. Tectonophysics, 482, 129–138, https://doi.org/10.1016/j.tecto.2009.07.021
    [Google Scholar]
  40. Schulz, I., Steiner, U. and Schubert, A.2017. Factors for the success of deep geothermal projects – experience from the Bavarian Molasse Basin. Erdöl Erdgas Kohle, 133, 73–79.
    [Google Scholar]
  41. Shatyrbayeva, I. and Drews, M.2020. Resistivity-based pore pressure investigation using the Waxman-Smits equation in the North Alpine Foreland Basin, SE Germany. Third EAGE Workshop on Pore Pressure Prediction, Online, 1–5.
    [Google Scholar]
  42. Skea, C., Rezagholilou, A., Behnoud Far, P., Gholami, R. and Sarmadivleh, M.2018. An approach for wellbore failure analysis using rock cavings and image processing. Journal of Rock Mechanics and Geotechnical Engineering, 10, 865–878, https://doi.org/10.1016/j.jrmge.2018.04.011
    [Google Scholar]
  43. Stefansson, V.2002. Investment cost for geothermal power plants. Geothermics, 31, 263–272, https://doi.org/10.1016/S0375-6505(01)00018-9
    [Google Scholar]
  44. Stober, I. and Bucher, K.2013. Geothermal Energy: From Theoretical Models to Exploration and Development. Springer-Verlag, Berlin, https://doi.org/10.1007/978-3-642-13352-7
    [Google Scholar]
  45. Van Poollen, H.K.1961. Status of drill-stem testing techniques and analysis. Journal of Petroleum Technology, SPE 1647G, 13, 333–339, https://doi.org/10.2118/1647-G-PA
    [Google Scholar]
  46. Whittle, T.M., Lee, J. and Gringarten, A.C.2003. Will wireline formation tests replace well tests?Presented at theSPE Annual Technical Conference and Exhibition, October 2003, Denver, Colorado.
    [Google Scholar]
  47. Zoback, M.D.2007. Reservoir Geomechanics. Cambridge University Press.
    [Google Scholar]
/content/journals/10.1144/geoenergy2023-038
Loading
/content/journals/10.1144/geoenergy2023-038
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error