1887
Volume 2, Issue 1
  • E-ISSN:
PDF

Abstract

This paper presents the status of the HE-E heater experiment, which is currently running at the Mont Terri Underground Research Laboratory (URL) in Switzerland. The experiment is located in a 10 m-long section of a micro-tunnel in the shaly facies of the Opalinus Clay and includes two 4 m-long heater sections isolated by plugs. Heater 1 is located in a sand/bentonite (65/35) buffer section and Heater 2 is located in a granular bentonite buffer section.

Heating started on 28 June 2011, and this paper reports results up to 30 June 2023. During the 12 years of heating the system has otherwise been left undisturbed, with ongoing but very slow resaturation from the Opalinus Clay. The observed response to heating is considered in two phases: (1) the initial transient period of about 500 days when heater temperatures rose to the target 140°C and (2) the subsequent evolution. Recently a novel telescoped drilling procedure has been performed to recover and characterize material from the bentonite buffer without interruption of the heating. This paper describes the experimental long-term evolution and status prior to this disturbance, together with expectations regarding the current state of the buffer.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2023-049
2024-06-11
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/geoenergy/2/1/geoenergy2023-049.html?itemId=/content/journals/10.1144/geoenergy2023-049&mimeType=html&fmt=ahah

References

  1. Czaikowski, O., Garitte, B., Gaus, I., Gens, A., Kuhlmann, U. and Wieczorek, K.2012. Design and Predictive Modelling of the HE-E Test PEBS Deliverable 03.2-1. Nagra Arbeitsbericht, NAB 12-03.
    [Google Scholar]
  2. Ferrari, A., Witteveen, P. and Laloui, L.2012. Material Properties and Geomechanical Tests on BHG-D1 Cores: Mont Terri HG-D Experiment, Phase 15: Mont Terri HG-D Experiment, Phase 15. Mont Terri Technical Report TN 2010-52.
    [Google Scholar]
  3. Garitte, B. (ed.) 2016. DECOVALEX-2015 Project Task B1 Final Report. KTH, Stockholm, Sweden (TRITA-LWR.REPORT).
    [Google Scholar]
  4. Garitte, B., Bond, A., Millard, A., Zhang, C., Mcdermott, C., Nakama, S. and Gens, A.2013. Analysis of hydro-mechanical processes in a ventilated tunnel in an argillaceous rock on the basis of different modelling approaches. Journal of Rock Mechanics and Geotechnical Engineering, 5, 1–17, https://doi.org/10.1016/j.jrmge.2012.09.001
    [Google Scholar]
  5. Garitte, B., Shao, H. et al.2017. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory. Environmental Earth Sciences, 76, https://doi.org/10.1007/s12665-016-6367-x
    [Google Scholar]
  6. Gaus, I.2022. THMC in large scale experiments: how it contributes to implementing geological repositories. Scientific Symposium Mont Terri 25th Anniversary, Porrentruy, Switzerland, September 2022.
    [Google Scholar]
  7. Gaus, I., Garitte, B. et al.2014a. The HE-E Experiment: Lay-Out, Interpretation and THM Modelling, Combining D2.2-11 and D3.2-2 of the PEBS Project. Nagra, Wettingen, Switzerland, Nagra Arbeitsbericht NAB 14-53, http://www.nagra.ch
    [Google Scholar]
  8. Gaus, I., Wieczorek, K. et al.2014b. EBS behaviour immediately after repository closure in a clay host rock: HE-E experiment (Mont Terri URL). In:Norris, S., Bruno, J. et al. (eds) 2014. Clays in Natural and Engineered Barriers for Radioactive Waste Confinement. Geological Society, London, Special Publications, 400, 71–91, https://doi.org/10.1144/SP400.11
    [Google Scholar]
  9. Gaus, I., Johnson, L., Wieczorek, K., Mayor, J.C., Sellin, P., Schäfers, A. and Fahland, S.2015. Long-term performance of engineered barriers for high-level waste repositories–15358. WM Symposia, Inc., July, PO Box 27646, 85285-7646 Tempe, AZ, United States.
    [Google Scholar]
  10. Gens, A.2003. The role of Geotechnical Engineering for nuclear energy utilization. In:Vaníček, I., Barvínek, R. et al. (eds) Proceedings of the XIII ECSMGE (Prague), Special Lecture 2, Prague, 3, 25–67.
    [Google Scholar]
  11. Gens, A. and Vasconcelos, R.2019. HE-E Experiment: Modelling of the HE-E Test. Mont Terri Project, Mont Terri Project Technical Notes, TN 2019-43.
    [Google Scholar]
  12. Gens, A., Wieczorek, K. et al.2017. Performance of the Opalinus Clay under thermal loading: experimental results from Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110, 269–286, https://doi.org/10.1007/s00015-016-0258-8
    [Google Scholar]
  13. Gens, A., Vasconcelos, R. and Olivella, S.2020. Towards higher temperatures in nuclear waste repositories. E3S Web Conference, La Jolla, California, USA, 205, 1001, https://doi.org/10.1051/e3sconf/202020501001
    [Google Scholar]
  14. Ghabezloo, S. and Sulem, J.2009. Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mechanics and Rock Engineering, 42, 1–24, https://doi.org/10.1007/s00603-008-0165-z
    [Google Scholar]
  15. Göbel, I., Alheid, H.J. et al.2007. Heater experiment: rock and bentonite thermohydro-mechanical (THM) processes in the near field of a thermal source for development of deep underground high level radioactive waste repositories. In:Bossart, P. and Nussbaum, P. (eds) Mont Terri Project - Heater Experiment, Engineered Barrier Emplacement and Ventilation Experiment. Reports of the Swiss Geological Survey, 1. Swisstopo, Wabern, 7–114.
    [Google Scholar]
  16. Johnson, L.H., Niemeyer, M., Klubertanz, G., Siegel, P. and Gribi, P.2002. Calculations of the Temperature Evolution of a Repository for Spent Fuel, Vitrified High-Level Waste and Intermediate Level Waste in Opalinus Clay. Nagra Technical Report NTB 01-04. Nagra, Wettingen.
    [Google Scholar]
  17. Johnson, L.H., Gaus, I. et al.2014. Integration of the Short-Term Evolution of the Engineered Barrier System (EBS) with the Long-Term Safety Perspective (Deliverable D4.1 of the PEBS Project). Nagra Arbeitsbericht, NAB 14-79.
    [Google Scholar]
  18. Kober, F., García-Siñeriz, J.L. et al.2022. FEBEX-DP Synthesis – Summary of the Full-Scale Engineered Barriers Experiment – Dismantling Project. Nagra Technischer Bericht, NTB 17-01.
    [Google Scholar]
  19. Kober, F., Schneeberger, R., Vomvoris, S., Finsterle, S. and Lanyon, G.W.2023. The HotBENT Experiment: objectives, design, emplacement and early transient evolution. Geoenergy, 1, geoenergy2023-021, https://doi.org/10.1144/geoenergy2023-021
    [Google Scholar]
  20. Leupin, O.X., Smith, P. et al.2016. High-Level Waste Repository-Induced Effects. Nagra Technical Report, NTB 14-13.
    [Google Scholar]
  21. Martin, C.D. and Lanyon, G.W.2003. Measurement of in-situ stress in weak rocks at Mont Terri Rock Laboratory, Switzerland. International Journal of Rock Mechanics and Mining Sciences, 40, 1077–1088, https://doi.org/10.1016/S1365-1609(03)00113-8
    [Google Scholar]
  22. Mayor, J.C., García-Siñeriz, J.L. et al.2007. Ventilation Experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories. In:Bossart, P. and Nussbaum, C. (eds) Mont Terri Project – Heater Experiment, Engineered Barrier Emplacement and Ventilation Experiment. Rep. Swiss Geol. Surv., 1, 182–240.
    [Google Scholar]
  23. Monfared, M., Sulem, J., Delage, P. and Mohajerani, M.2011. A laboratory investigation on thermal properties of the Opalinus Claystone. Rock Mechanics and Rock Engineering, 44, 735–747, https://doi.org/10.1007/s00603-011-0171-4
    [Google Scholar]
  24. Müller, H.R., Garitte, B. et al.2017. Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory. Swiss Journal of Geosciences, 110, 287–306, https://doi.org/10.1007/s00015-016-0251-2
    [Google Scholar]
  25. Nagra2019. Implementation of the Full-scale Emplacement Experiment in Mont Terri: Design, Construction and Preliminary Results. Nagra Technical Report NTB 15-02.
    [Google Scholar]
  26. Papafotiou, A. and Senger, R.K.2014. HE-E Extension Modeling to Repository Scale HLW. Nagra Arbeitsbericht, NAB 16-31.
    [Google Scholar]
  27. Plötze, M. and Weber, H.2007. ESDRED: Emplacement Tests with Granular Bentonite MX-80: Laboratory Results from ETH Zürich. Nagra Arbeitsbericht, NAB 07-24.
    [Google Scholar]
  28. Romero, E., Senger, R., Marschall, P. and Gómez, R.2013. Air tests on low-permeability claystone formations. experimental results and simulations. In:Laloui, L. and Ferrari, A. (eds) Multiphysical Testing of Soils and Shales. Springer Series in Geomechanics and Geoengineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 69–83.
    [Google Scholar]
  29. Sakaki, T., Firat Lüthi, B. and Vogt, T.2022. Investigation of the emplacement dry density of granulated bentonite mixtures using dielectric, mass-balance and actively heated fiber-optic distributed temperature sensing methods. Geomechanics for Energy and the Environment, 32, 100329, https://doi.org/10.1016/j.gete.2022.100329
    [Google Scholar]
  30. Sakaki, T., Müller, H.R. and Manukyan, E.2023. Detection of potential voids in the granulated bentonite mixture and concrete plug in the Full-scale Emplacement experiment using a parallel-wire cable as an extra-long TDR waveguide. Geomechanics for Energy and the Environment, 34, 100467, https://doi.org/10.1016/j.gete.2023.100467
    [Google Scholar]
  31. Sato, S., Yamamoto, S., Torisu, S., Fukaya, M., Tawara, Y., Tanaka, K. and Florian, K.2020. Numerically reproduced HE-E experiment of Mont Terri project by Thermo-Hydro-Mechanical coupled model. E3S Web Conference, La Jolla, California, USA, 195, 4015, https://doi.org/10.1051/e3sconf/202019504015
    [Google Scholar]
  32. Schuster, K.2014. Seismic Data Report on EDZ and EBS Evolution (HE-E) PEBS Deliverable D2.2-10.
    [Google Scholar]
  33. Schuster, K.2018. HE-E Experiment: Seismic Long-Term Measurements; Interim Report with Exemplary Quantitative and Qualitative Results Until November 2017. Mont Terri Technical Note.
    [Google Scholar]
  34. Schuster, K., Furche, M., Shao, H., Hesser, J., Hertzsch, J.M., Gräsle, W. and Rebscher, D.2019. Understanding the evolution of nuclear waste repositories by performing appropriate experiments – selected investigations at Mont Terri rock laboratory. Advances in Geosciences, 49, 175–186, https://doi.org/10.5194/adgeo-49-175-2019
    [Google Scholar]
  35. Senger, R. and Ewing, J.2008. Evolution of Temperature and Water Content in the Bentonite Buffer: Detailed Modelling of Two-Phase Flow Processes Associated with the Early Closure Period. Nagra Arbeitsbericht NAB 08-32. Nagra, Wettingen.
    [Google Scholar]
  36. Thury, M. and BossartP.1999. Mont Terri Rock Laboratory –Results of the Hydrogeological, Geochemical and Geotechnical Experiments Performed in 1996 and 1997. Swiss National Hydrological and Geological Survey, Bern., 23.
    [Google Scholar]
  37. Vasconcelos, R., Gens, A., Vaunat, J., RodríguezC.E. and Villar, M.V.2023. Modelling a hydration and heating column test on unsaturated bentonite using a double-porosity approach. E3S Web of Conference, Milos, Greece, 382, 25007, https://doi.org/10.1051/e3sconf/202338225007
    [Google Scholar]
  38. Villar, M.V., Martín, P.L., Gómez-Espina, R., Romero, F.J. and Barcala, J.M.2012. THM Cells for the HE-E Test: Setup and First Results. PEBS Report D2.2-7.1. CIEMAT Technical Report CIEMAT/DMA/2G210/02/2012, Ciemat, Madrid & European Commission, Brussels. Madrid.
    [Google Scholar]
  39. Villar, M.V., Martín, P.L. and Romero, F.J.2014. Long-Term THM Tests Reports: THM Cells for the HE-E Test: Update of Results Until February 2014. PEBS Report D2.2-7.3. CIEMAT Technical Report CIEMAT/DMA/2G210/03/2014.
    [Google Scholar]
  40. Villar, M.V., Martín, P.L., Romero, F.J., Iglesias, R.J. and Gutiérrez-Rodrigo, V.2016. Saturation of barrier materials under thermal gradient. Geomechanics for Energy and the Environment, 8, 38–51, https://doi.org/10.1016/j.gete.2016.05.004
    [Google Scholar]
  41. Villar, M.V., Cuevas, J., Zabala, A.B., Ortega, A., Melón, A.M., Ruiz, A.I. and Iglesias, R.J.2023. Mineralogy and geochemistry of a bentonite pellets column heated for 10 years. Clays and Clay Minerals, 71, 166–190, https://doi.org/10.1007/s42860-023-00238-4
    [Google Scholar]
  42. Wieczorek, K., Miehe, R. and Garitte, B.2011. Measurement of Thermal Parameters of the HEE Buffer Materials. PEBS Deliverable D2.2-5.
    [Google Scholar]
  43. Wieczorek, K., Gaus, I. et al.2017. In-situ experiments on bentonite-based buffer and sealing materials at the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110, 253–268, https://doi.org/10.1007/s00015-016-0247-y
    [Google Scholar]
  44. Wieczorek, K., Czaikowski, O., Friedenberg, L., Jantschik, K., Komischke, M. and Kröhn, M.2020. In-Situ Research Work of GRS at the Mont Terri Rock Laboratory and Related Modelling. Experiments HE-E, FE-M, DM-A, SB-A, DB, MB-A, Virtus. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln, Garching b. München, Berlin, Braunschweig, GRS, 556.
    [Google Scholar]
  45. Wileveau, Y. and Rothfuchs, D.2007. THM Behaviour of Host Rock (HE-D) Experiment: Study of Thermal Effects on Opalinus Clay – Synthesis. Mont Terri technical report TR2006-01.
    [Google Scholar]
  46. Zhang, C.-L., Rothfuchs, T. et al.2007. Thermal Effects on the Opalinus Clay. A Joint Heating Experiment of ANDRA and GRS at the Mont Terri URL (HE-D Project). Final Report. Mont Terri Project Technical Report TR 2007-02 and GRS Report 224, ISBN 3-931995-98-4.
    [Google Scholar]
/content/journals/10.1144/geoenergy2023-049
Loading
/content/journals/10.1144/geoenergy2023-049
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error