1887
Volume 2, Issue 1
  • E-ISSN:
PDF

Abstract

Several sources of natural hydrogen are known or postulated but the process of serpentinization, the action of water on ultramafic rocks, is shown to be the most effective. Studies indicate that the rates and volumes generated by high-temperature serpentinization, (i.e. in the temperature range of 200–320°C), could feed a focused hydrogen system potentially capable of sealing and trapping gas-phase hydrogen in commercially-sized accumulations.

Natural hydrogen is generated by serpentinization wherever ultramafic rocks can be penetrated by aqueous fluids. This includes diverse geotectonic settings ranging from divergent and convergent plate margins to intra-plate orogenic belts and Precambrian cratons.

The ‘hydrogen system’ describes the generation, migration and sealing/trapping of hydrogen. There are two parts to the ‘generic hydrogen system’: the ‘source-generation sub-system’ requires an ultramafic protolith, usually in basement, and a supply of water penetrating basement rocks. In the ‘migration-retention sub-system’ migration, sealing and entrapment of gas-phase hydrogen behaves the same as for hydrocarbon gases.

The hydrogen system by serpentinization is used to develop play models to guide exploration in the accessible and exploitable geotectonic settings of continental cratons, ophiolites and convergent margins.

This article is part of the Hydrogen as a future energy source collection available at: https://www.lyellcollection.org/topic/collections/hydrogen

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2024-002
2024-05-07
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/geoenergy/2/1/geoenergy2024-002.html?itemId=/content/journals/10.1144/geoenergy2024-002&mimeType=html&fmt=ahah

References

  1. Albers, E., Bach, W., Perez-Gussinye, M., McCammon, C. and Frederichs, T.2021. Serpentinization driven H2 production from continental break-up to mid-oceanic ridge spreading: unexpected high rates at the West Iberia Margin. Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.673063
    [Google Scholar]
  2. Allen, P.A. and Allen, J.R.2005. The Petroleum Play Basin Analysis: Principles and Applications. Blackwell, Oxford, 405–493.
    [Google Scholar]
  3. Anhaeusser, C.R.2014. Archaean greenstone belts and associated granitic rocks – a review. Journal of African Earth Sciences, 100, 684–732, https://doi.org/10.1016/j.jafrearsci.2014.07.019
    [Google Scholar]
  4. Bousquet, R., El Mamoun, R., Saddiqi, O., Goffé, B., Möller, A. and Madi, A.2008. Mélanges and ophiolites during the Pan-African orogeny: the case of the Bou-Azzer ophiolite suite (Morocco). In:Ennih, N. and Liegeois, J.-P. (eds) The Boundaries of the West African Craton. Geological Society, London, Special Publications, 297, 233–247, https://doi.org/doi:10.1144/SP297.11
    [Google Scholar]
  5. Cannat, M., Rouméjon, S., Momoh, E. and Leroy, S.2019. Tectonic and magmatic controls on serpentinization at slow spreading mid-ocean ridges. Geophysical Research Abstracts, 21, https://meetingorganizer.copernicus.org/EGU2019/EGU2019-12381.pdf
    [Google Scholar]
  6. Delescluse, M. and Chamot-Rooke, N.2008. Serpentinization pulse in the actively deforming Central Indian Basin. Earth and Planetary Science Letters, 276, 140–151, https://doi.org/10.1016/j.epsl.2008.09.017
    [Google Scholar]
  7. Ellison, E.T., Templeton, A.S., Zeigler, S.D., Mayhew, L.E., Kelemen, P.B. and Matter, J.M.2021. Low-temperature hydrogen formation during aqueous alteration of serpentinized peridotite in the samail ophiolite. Journal of Geophysical Research: Solid Earth, 126, https://doi.org/10.1029/2021jb021981
    [Google Scholar]
  8. Evans, B.W., Hattori, K. and Baronnet, A.2013. Serpentinite: what, why, where?Elements, 9, 99–106, https://doi.org/10.2113/gselements.9.2.99
    [Google Scholar]
  9. Furnes, H., Dilek, Y. and de Wit, M.2015. Precambrian greenstone sequences represent different ophiolite types. Gondwana Research, 27, 649–685, https://doi.org/10.1016/j.gr.2013.06.004
    [Google Scholar]
  10. Gaucher, E.C.2020. New perspectives in the industrial exploration of native hydrogen. Elements, 16, 8–9, https://doi.org/10.2138/gselements.16.1.8
    [Google Scholar]
  11. Hand, E.2023. Hidden hydrogen. Science, 379, 630–636, https://doi.org/10.1126/science.adh1477
    [Google Scholar]
  12. Hutchinson, I.P., Jackson, O., Stocks, A.E., Barnicoat, A.C. and Lawrence, S.R.2024. Greenstones as a source of hydrogen in cratonic sedimentary basins. Geological Society London, Special Publication, 547, https://doi.org/10.1144/SP547-2023-39
    [Google Scholar]
  13. Kaye, G.W.C. and Laby, T.H.1986. Tables of Physical and Chemical Constants and Some Mathematical Functions. 15th edn. Longman & Co., New York.
    [Google Scholar]
  14. Klein, F., Bach, W. and McCollom, T.M.2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos, 178, 55–69, https://doi.org/10.1016/j.lithos.2013.03.008
    [Google Scholar]
  15. Klein, F., Tarnas, J.D. and Bach, W.2020. Abiotic sources of molecular hydrogen on earth. Elements, 16, 19–24, https://doi.org/10.2138/gselements.16.1.19
    [Google Scholar]
  16. Lazar, C.2020. Using silica activity to model redox-dependent fluid compositions in serpentinites from 100 to 700°C and from 1 to 20 kbar. Journal of Petrology, 61, 461–499, https://doi.org/10.1093/petrology/egaa101
    [Google Scholar]
  17. Lefeuvre, N., Truche, L. et al.2021. Native H2 exploration in the western Pyrenean Foothills. Geochemistry, Geophysics, Geosystems, 22, e2021GC009917, https://doi.org/10.1029/2021GC009917
    [Google Scholar]
  18. Leong, J.A., Nielsen, M. et al.2023. H2 and CH4 outgassing rates in the Samail ophiolite, Oman: implications for low-temperature, continental serpentinization rates. Geochimica et Cosmochimica Acta, 347, 1–15, https://doi.org/10.1016/j.gca.2023.02.008
    [Google Scholar]
  19. Lin, L.-H., Slater, G.F., Sherwood Lollar, B., Lacrampe-Couloume, G. and Onstott, T.C.2005. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochimica et Cosmochimica Acta, 69, 893–903, https://doi.org/10.1016/j.gca.2004.07.032
    [Google Scholar]
  20. Lodhia, B.H. and Clark, S.R.2022. Computation of vertical fluid mobility of CO2, methane, hydrogen and hydrocarbons through sandstones and carbonates. Scientific Reports, 12, https://doi.org/10.1038/s41598-022-14234-6
    [Google Scholar]
  21. Magoon, L.B. and Dow, W.G. (eds) 1994. The petroleum system. The Petroleum System - From Source to Trap. AAPG Memoir, 60. American Association of Petroleum Geologists, Tulsa, Oklahoma, 3–24.
    [Google Scholar]
  22. Maiga, O., Deville, E., Laval, J., Prinzhofer, A. and Diallo, A.B.2023. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali. Scientific Reports, 13, 11876, https://doi.org/10.1038/s41598-023-38977-y
    [Google Scholar]
  23. Maiga, O., Deville, E., Laval, J., Prinzhofer, A. and Diallo, A.B.2024. Trapping processes of large volumes of natural hydrogen in the subsurface: the emblematic case of the Bourakebougou H2 field in Mali. International Journal of Hydrogen Energy, 50, 640–647, https://doi.org/10.1016/j.ijhydene.2023.10.131
    [Google Scholar]
  24. Malvoisin, B. and Brunet, F.2023. Barren ground depressions, natural H2 and orogenic gold deposits: spatial link and geochemical model. Science of The Total Environment, 856, 158969, https://doi.org/10.1016/j.scitotenv.2022.158969
    [Google Scholar]
  25. Mayhew, L.E., Ellison, E.T., McCollom, T.M., Trainor, T.P. and Templeton, A.S.2013. Hydrogen generation from low-temperature water–rock reactions. Nature Geoscience, 6, 478–484, https://doi.org/10.1038/ngeo1825
    [Google Scholar]
  26. McCollom, T.M.2003. Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochimica et Cosmochimica Acta, 67, 311–317, https://doi.org/10.1016/S0016-7037(02)00945-6
    [Google Scholar]
  27. McCollom, T.M., Klein, F. et al.2016. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochimica et Cosmochimica Acta, 181, 175–200, https://doi.org/10.1016/j.gca.2016.03.002
    [Google Scholar]
  28. McCollom, T.M., Klein, F. and Ramba, M.2022. Hydrogen generation from serpentinization of iron-rich olivine on Mars, icy moons, and other planetary bodies. Icarus, 372, 114754, https://doi.org/10.1016/j.icarus.2021.114754
    [Google Scholar]
  29. Monge, A.M. and Vayssaire, A.2022. A review of some aspects of the molecular hydrogen transport behavior in the subsurface. EAGE Annual 83rd Conference and Exhibition, Madrid, Spain, 1–5, https://doi.org/10.3997/2214-4609.202210914
    [Google Scholar]
  30. Moretti, I., Brouilly, E., Loiseau, K., Prinzhofer, A. and Deville, E.2021. Hydrogen emanations in intracratonic areas: new guide lines for early exploration basin screening. Geosciences, 11, 145, https://doi.org/10.3390/geosciences11030145
    [Google Scholar]
  31. Muhammed, N.S., Haq, B., Al Shehri, D., Al-Ahmed, A., Rahman, M.M. and Zaman, E.2022. A review on underground hydrogen storage: insight into geological sites, influencing factors and future outlook. Energy Reports, 8, 461–499, https://doi.org/10.1016/j.egyr.2021.12.002
    [Google Scholar]
  32. Prinzhofer, A., Tahara Cissé, C.S. and Diallo, A.B.2018. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43, 19315–19326, https://doi.org/10.1016/j.ijhydene.2018.08.193
    [Google Scholar]
  33. Ranganai, R.T.2012. Gravity and aeromagnetic studies of the Filabusi Greenstone Belt, Zimbabwe Craton: regional and geotectonic implications. International Journal of Geosciences, 3, 1048–1064, https://doi.org/10.4236/ijg.2012.35106
    [Google Scholar]
  34. Renard, F.2021. Reaction-induced fracturing: when chemistry breaks rocks. Journal of Geophysical Research: Solid Earth, 126, e2020JB021451, https://doi.org/10.1029/2020JB021451
    [Google Scholar]
  35. Rouméjon, S., Cannat, M., Agrinier, P., Godard, M. and Andreani, M.2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62–65°E). Journal of Petrology, 56, 703–734, https://doi.org/10.1093/petrology/egv014
    [Google Scholar]
  36. Rüpke, L.H. and Hasenclever, J.2017. Global rates of mantle serpentinization and H2 production at oceanic transform faults in 3-D geodynamic models. Geophysical Research Letters, 44, 6726–6734, https://doi.org/10.1002/2017GL072893
    [Google Scholar]
  37. Sallarès, V., Meléndez, A., Prada, M., Ranero, C.R., McIntosh, K. and Grevemeyer, I.2013. Overriding plate structure of the Nicaragua convergent margin: relationship to the seismogenic zone of the 1992 tsunami earthquake. Geochemistry, Geophysics, Geosystems, 14, 3436–3461, https://doi.org/10.1002/ggge.20214
    [Google Scholar]
  38. Searle, M., Rioux, M. and Garber, J.M.2022. One line on the map: a review of the geological history of the Semail Thrust, Oman-UAE mountains. Journal of Structural Geology, 158, 104594, https://doi.org/10.1016/j.jsg.2022.104594
    [Google Scholar]
  39. Skelton, A., Whitmarsh, R., Arghe, F., Crill, P. and Koyi, H.2005. Constraining the rate and extent of mantle serpentinization from seismic and petrological data: implications for chemosynthesis and tectonic processes. Geofluids, 5, 153–164, https://doi.org/10.1111/j.1468-8123.2005.00111.x
    [Google Scholar]
  40. Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G. and Bird, D.K.2004. H2-rich fluids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Science, 101, 12818–12823, https://doi.org/10.1073/pnas.0405289101
    [Google Scholar]
  41. Stalker, L., Talukder, A., Strand, J., Josh, M. and Faiz, M.2022. Gold (hydrogen) rush: risks and uncertainties in exploring for naturally occurring hydrogen. The APPEA Journal, 62, 361–380, https://doi.org/10.1071/AJ21130
    [Google Scholar]
  42. Tarapoanca, M., Andriessen, P. et al.2010. Forward kinematic modelling of a regional transect in the Northern Emirates using geological and apatite fission track age constraints on paleo-burial history. Arabian Journal of Geosciences, 3, 395–411, https://doi.org/10.1007/s12517-010-0213-3
    [Google Scholar]
  43. Tissot, B.P. and Welte, D.H.2013. Petroleum Formation and Occurrence. Springer, Berlin.
    [Google Scholar]
  44. Toft, P.B., Arkani-Hamed, J. and Haggerty, S.E.1990. The effects of serpentinization on density and magnetic susceptibility: a petrophysical model. Physics of the Earth and Planetary Interiors, 65, 137–157, https://doi.org/10.1016/0031-9201(90)90082-9
    [Google Scholar]
  45. Truche, L., Donzé, F.-V. et al.2024. A deep reservoir for hydrogen drives intense degassing in the Bulqizë ophiolite. Science, 383, 618–621, https://doi.org/10.1126/science.adk9099
    [Google Scholar]
  46. Ulrich, M., Muñoz, M., Boulvais, P., Cathelineau, M., Cluzel, D., Guillot, S. and Picard, C.2020. Serpentinization of New Caledonia peridotites: from depth to (sub-)surface. Contributions to Mineralogy and Petrology, 175, https://doi.org/10.1007/s00410-020-01713-0
    [Google Scholar]
  47. Vacquand, C., Deville, E. et al.2018. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta, 223, 437–461, https://doi.org/10.1016/j.gca.2017.12.018
    [Google Scholar]
  48. Vitale Brovarone, A., Sverjensky, D.A., Piccoli, F., Ressico, F., Giovannelli, D. and Daniel, I.2020. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nature Communications, 11, https://doi.org/10.1038/s41467-020-17342-x
    [Google Scholar]
  49. von Huene, R., Aubouin, J. et al.2007. In:Orlofsky, S. (ed.) Initial Reports of the Deep Sea Drilling Project, Leg 84. U.S. Government Printing Office, Washington D.C., 967, https://doi.org/10.2973/dsdp.proc.84.143.1985
    [Google Scholar]
  50. Walther, C.H.E., Flueh, E.R., Ranero, C.R., von Huene, R. and Strauch, W.2000. Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver. Geophysical Journal International, 141, 759–777, https://doi.org/10.1046/j.1365-246x.2000.00134.x
    [Google Scholar]
  51. Wang, L., Jin, Z., Chen, X., Su, Y. and Huang, X.2023. The origin and occurrence of natural hydrogen. Energies, 16, 2400, https://doi.org/10.3390/en16052400
    [Google Scholar]
  52. Warr, O., Giunta, T., Ballentine, C.J. and Sherwood Lollar, B.2019. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chemical Geology, 530, 119322, https://doi.org/10.1016/j.chemgeo.2019.119322
    [Google Scholar]
  53. Worman, S.L., Pratson, L.F., Karson, J.A. and Klein, E.M.2016. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophysical Research Letters, 43, 6435–6443, https://doi.org/10.1002/2016GL069066
    [Google Scholar]
  54. Yang, J.2006. Full 3-D numerical simulation of hydrothermal fluid flow in faulted sedimentary basins: example of the McArthur Basin, Northern Australia. Journal of Geochemical Exploration, 89, 440–444, https://doi.org/10.1016/j.gexplo.2005.11.080
    [Google Scholar]
  55. Zgonnik, V.2020. The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth-Science Reviews, 203, https://doi.org/10.1016/j.earscirev.2020.103140
    [Google Scholar]
  56. Zgonnik, V., Beaumont, V., Larin, N., Pillot, D. and Deville, E.2019. Diffused flow of molecular hydrogen through the Western Hajar mountains, Northern Oman. Arabian Journal of Geosciences, 12, 71, https://doi.org/10.1007/s12517-019-4242-2
    [Google Scholar]
  57. Zhang, L., Nasika, C., Donzé, F.-V., Zheng, X., Renard, F. and Scholtès, L.2019. Modeling porosity evolution throughout reaction-induced fracturing in rocks with implications for serpentinization. Journal of Geophysical Research: Solid Earth, 124, 5708–5733, https://doi.org/10.1029/2018JB016872
    [Google Scholar]
/content/journals/10.1144/geoenergy2024-002
Loading
/content/journals/10.1144/geoenergy2024-002
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error