1887
Volume 2, Issue 1
  • E-ISSN:
PDF

Abstract

Assessments of fault geometries and fault-risk parameters are crucial when evaluating the integrity of a structurally controlled CO storage site. To perform these assessments, seismic data, recorded in time, must be converted to depth. The velocity models used for this time to depth conversion influence the final depth image and, consequently, the geometry of the interpreted faults. Against this background, we created four velocity models for depth conversion, assessed the impact on fault throw, dip and thickness of the primary seal, and, subsequently, a fault-risk assessment of the Vette Fault Zone in the Smeaheia CO storage site. We found that depth conversion had a larger influence on fault throw and thickness of the primary seal than on fault dip. In contrast, the overall assessment of the presence of a membrane seal and geomechanical integrity showed less sensitivity to the depth conversion process. Consequently, we suggest that a relatively robust fault-risk assessment can be made with a variety of velocity model designs and data input. Nevertheless, we found a mean difference of 2% in the shale gouge ratio, 4% in the slip tendency and 9% in the dilation tendency for the Vette Fault Zone, emphasizing the importance of accounting for the influence of depth conversion in optimizing structural assessments in potential CO storage sites.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2024-006
2024-09-13
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/geoenergy/2/1/geoenergy2024-006.html?itemId=/content/journals/10.1144/geoenergy2024-006&mimeType=html&fmt=ahah

References

  1. Alcalade, J., Bond, C.E., Johnson, G., Ellis, J.F. and Butler, R.W.2017. Impact of seismic image quality on fault interpretation uncertainty. GSA Today, 27, 4–10, https://doi.org/10.1130/GSATG282A.1
    [Google Scholar]
  2. Allan, U.S.1989. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bulletin, 73, 803–811, https://doi.org/10.1306/44B4A271-170A-11D7-8645000102C1865D
    [Google Scholar]
  3. Andrews, B.J., Mildon, Z.K., Jackson, C.A. and Bond, C.E.2024. Quantifying fault interpretation uncertainties and their impact on fault seal and seismic hazard analysis. Journal of Structural Geology, 184, https://doi.org/10.1016/j.jsg.2024.105158
    [Google Scholar]
  4. Andrews, J.S., Fintland, T., Helstrup, O., Horsrud, P. and Raaen, A.2016. Use of unique database of good quality stress data to investigate theories of fracture initiation, fracture propagation and the stress state in the subsurface. Paper ARMA-2016-2887presented at the50th US Rock Mechanics/Geomechanics Symposium, 26–29 June 2016, Houston, Texas, USA.
    [Google Scholar]
  5. Anell, I., Thybo, H. and Rasmussen, E.2012. A synthesis of Cenozoic sedimentation in the North Sea. Basin Research, 24, 154–179, https://doi.org/10.1111/j.1365-2117.2011.00517.x
    [Google Scholar]
  6. Arts, R., Chadwick, A., Eiken, O., Thibeau, S. and Nooner, S.2008. Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26, 65–72, https://doi.org/10.3997/1365-2397.26.1115.27807
    [Google Scholar]
  7. Badley, M., Price, J., Dahl, C.R. and Agdestein, T.1988. The structural evolution of the northern Viking Graben and its bearing upon extensional modes of basin formation. Journal of the Geological Society, London, 145, 455–472, https://doi.org/10.1144/gsjgs.145.3.0455
    [Google Scholar]
  8. Barrett, B.J., Hodgson, D.M., Jackson, C.A.L., Lloyd, C., Casagrande, J. and Collier, R.E.L.2021. Quantitative analysis of a footwall-scarp degradation complex and syn-rift stratigraphic architecture, Exmouth Plateau, NW Shelf, offshore Australia. Basin Research, 33, 1135–1169, https://doi.org/10.1111/bre.12508
    [Google Scholar]
  9. Barton, C.A., Zoback, M.D. and Moos, D.1995. Fluid flow along potentially active faults in crystalline rock. Geology, 23, 683–686, https://doi.org/10.1130/0091-7613(1995)023%3C0683:FFAPAF%3E2.3.CO;2
    [Google Scholar]
  10. Bell, R.E., Jackson, C.A.L., Whipp, P.S. and Clements, B.2014. Strain migration during multiphase extension: observations from the northern North Sea. Tectonics, 33, 1936–1963, https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  11. Berg, S.S. and Skar, T.2005. Controls on damage zone asymmetry of a normal fault zone: Outcrop analyses of a segment of the Moab fault, SE Utah. Journal of Structural Geology, 27, 1803–1822, https://doi.org/10.1016/j.jsg.2005.04.012
    [Google Scholar]
  12. Berger, M. and Roberts, A.1999. The Zeta Structure: a footwall degradation complex formed by gravity sliding on the western margin of the Tampen Spur, Northern North Sea. Geological Society, London, Petroleum Geology Conference Series, 5, 107–116, https://doi.org/10.1144/0050107
    [Google Scholar]
  13. Birdus, S.2007. Removing fault shadow distortions by fault-constrained tomography. SEG Technical Program Expanded Abstracts, 2007, 3039–3043, https://doi.org/10.1190/1.2793102
    [Google Scholar]
  14. Bjørlykke, K.1993. Fluid flow in sedimentary basins. Sedimentary Geology, 86, 137–158, https://doi.org/10.1016/0037-0738(93)90137-T
    [Google Scholar]
  15. Bond, C.E.2015. Uncertainty in structural interpretation: lessons to be learnt. Journal of Structural Geology, 74, 185–200, https://doi.org/10.1016/j.jsg.2015.03.003
    [Google Scholar]
  16. Bouvier, J., Kaars-Sijpesteijn, C., Kluesner, D., Onyejekwe, C. and Van der Pal, R.1989. Three-dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria. AAPG Bulletin, 73, 1397–1414, https://doi.org/10.1306/44B4AA5A-170A-11D7-8645000102C1865D
    [Google Scholar]
  17. Bretan, P., Yielding, G., Mathiassen, O.M. and Thorsnes, T.2011. Fault-seal analysis for CO2 storage: an example from the Troll area, Norwegian Continental Shelf. Petroleum Geoscience, 17, 181–192, https://doi.org/10.1144/1354-079310-025
    [Google Scholar]
  18. Brudy, M. and Kjørholt, H.2001. Stress orientation on the Norwegian continental shelf derived from borehole failures observed in high-resolution borehole imaging logs. Tectonophysics, 337, 65–84, https://doi.org/10.1016/S0040-1951(00)00299-7
    [Google Scholar]
  19. Cartwright, J.A., Mansfield, C. and Trudgill, B.1996. The growth of normal faults by segment linkage. Geological Society, London, Special Publications, 99, 163–177, https://doi.org/10.1144/GSL.SP.1996.099.01.13
    [Google Scholar]
  20. Chiaramonte, L., Zoback, M.D., Friedmann, J. and Stamp, V.2008. Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization. Environmental Geology, 54, 1667–1675, https://doi.org/10.1007/s00254-007-0948-7
    [Google Scholar]
  21. Childs, C., Sylta, Ø., Moriya, S., Morewood, N., Manzocchi, T., Walsh, J.J. and Hermanssen, D.2009. Calibrating fault seal using a hydrocarbon migration model of the Oseberg Syd area, Viking Graben. Marine and Petroleum Geology, 26, 764–774, https://doi.org/10.1016/j.marpetgeo.2008.05.004
    [Google Scholar]
  22. Christiansson, P., Faleide, J. and Berge, A.2000. Crustal structure in the northern North Sea: an integrated geophysical study. Geological Society, London, Special Publications, 167, 15–40, https://doi.org/10.1144/GSL.SP.2000.167.01.02
    [Google Scholar]
  23. CO2 Datashare2021. Smeaheia Dataset. Gassnova, https://co2datashare.org/dataset/smeaheia-dataset [last accessed 4 December 2023].
  24. Coward, M., Dewey, J., Hempton, M. and Holroyd, J.2003. Tectonic evolution. In:Evans, D., Graham, C., Armour, A. and Bathurst, P. (eds) The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society, London, 17–33.
    [Google Scholar]
  25. Cowie, P.A., Underhill, J.R., Behn, M.D., Lin, J. and Gill, C.E.2005. Spatio-temporal evolution of strain accumulation derived from multi-scale observations of Late Jurassic rifting in the northern North Sea: A critical test of models for lithospheric extension. Earth and Planetary Science Letters, 234, 401–419, https://doi.org/10.1016/j.epsl.2005.01.039
    [Google Scholar]
  26. Crameri, F.2021. Scientific Colour Maps (v.7.0.0). Zenodo, https://doi.org/10.5281/zenodo.5501399 [last accessed 3 January 2022].
  27. Cunningham, J., Cardozo, N., Townsend, C. and Callow, R.2021. The impact of seismic interpretation methods on the analysis of faults: a case study from the Snøhvit Field, Barents Sea. Solid Earth Discussions, 12, 741–764, https://doi.org/10.5194/se-12-741-2021
    [Google Scholar]
  28. Davies, R.J., Turner, J. and Underhill, J.R.2001. Sequential dip-slip fault movement during rifting: a new model for the evolution of the Jurassic trilete North Sea rift system. Petroleum Geoscience, 7, 371–388, https://doi.org/10.1144/petgeo.7.4.371
    [Google Scholar]
  29. Deegan, C. and Scull, B.1977. A Standard Lithostratigraphic Nomenclature for the Central and the Northern North Sea Mesozoic North. Norwegian Petroleum Directorate Bulletin, 1.
    [Google Scholar]
  30. Deng, P., Lee, Y. et al.2022. Correcting fault shadows – a case study comparison of fault-constrained tomography and time-lag full-waveform inversion. In: Proceedings of the 83rd EAGE Annual Conference & Exhibition. European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands, https://doi.org/10.3997/2214-4609.202210895
    [Google Scholar]
  31. Doré, A., Lundin, E., Fichler, C. and Olesen, O.1997. Patterns of basement structure and reactivation along the NE Atlantic margin. Journal of the Geological Society, London, 154, 85–92, https://doi.org/10.1144/gsjgs.154.1.0085
    [Google Scholar]
  32. Dreyer, T., Whitaker, M., Dexter, J., Flesche, H. and Larsen, E.2005. From spit system to tide-dominated delta: integrated reservoir model of the Upper Jurassic Sognefjord Formation on the Troll West Field. Geological Society, London, Petroleum Geology Conference Series, 6, 423–448, https://doi.org/10.1144/0060423
    [Google Scholar]
  33. Duffy, O.B., Bell, R.E., Jackson, C.A.-L., Gawthorpe, R.L. and Whipp, P.S.2015. Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea. Journal of Structural Geology, 80, 99–119, https://doi.org/10.1016/j.jsg.2015.08.015
    [Google Scholar]
  34. Etris, E.L., Crabtree, N.J., Dewar, J. and Pickford, S.2001. True depth conversion: more than a pretty picture. CSEG Recorder, 26, 11–22, https://csegrecorder.com/articles/view/true-depth-conversion-more-than-a-pretty-picture
    [Google Scholar]
  35. Færseth, R.1996. Interaction of Permo-Triassic and Jurassic extensional fault-blocks during the development of the northern North Sea. Journal of Geological Society, London, 153, 931–944, https://doi.org/10.1144/gsjgs.153.6.0931
    [Google Scholar]
  36. Færseth, R. and Ravnås, R.1998. Evolution of the Oseberg fault-block in context of the northern North Sea structural framework. Marine and Petroleum Geology, 15, 467–490, https://doi.org/10.1016/S0264-8172(97)00046-9
    [Google Scholar]
  37. Færseth, R.B., Gabrielsen, R.H. and Hurich, C.A.1995. Influence of basement in structuring of the North Sea basin, offshore southwest Norway. Norwegian Journal of Geology, 75, 105–119.
    [Google Scholar]
  38. Færseth, R.B., Johnsen, E. and Sperrevik, S.2007. Methodology for risking fault seal capacity: implications of fault zone architecture. AAPG Bulletin, 91, 1231–1246, https://doi.org/10.1306/03080706051
    [Google Scholar]
  39. Fagin, S.1996. The fault shadow problem: its nature and elimination. The Leading Edge, 15, 1005–1013, https://doi.org/10.1190/1.1437403
    [Google Scholar]
  40. Faleide, J.I., Kyrkjebo, R., Kjennerud, T., Gabrielsen, R.H., Jordt, H., Fanavoll, S. and Bjerke, M.D.2002. Tectonic impact on sedimentary processes during Cenozoic evolution of the northern North Sea and surrounding areas. Geological Society, London, Special Publications, 196, 235–270, https://doi.org/10.1144/GSL.SP.2002.196.01.14
    [Google Scholar]
  41. Faleide, T.S., Braathen, A., Lecomte, I., Mulrooney, M.J., Midtkandal, I., Bugge, A.J. and Planke, S.2021. Impacts of seismic resolution on fault interpretation: Insights from seismic modelling. Tectonophysics, 816, https://doi.org/10.1016/j.tecto.2021.229008
    [Google Scholar]
  42. Faleide, T.S., Braathen, A., Lecomte, I. and Aneli, I.2022. Exploring seismic detection and resolution thresholds of fault zones and gas seeps in the shallow subsurface using seismic modelling. Marine and Petroleum Geology, 143, https://doi.org/10.1016/j.marpetgeo.2022.105776
    [Google Scholar]
  43. Ferrill, D.A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A. and Morris, A.P.1999. Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today, 9(5), 1–8, https://rock.geosociety.org/gsatoday/archive/9/5/pdf/gt9905.pdf
    [Google Scholar]
  44. Ferrill, D.A., Smart, K.J. and Morris, A.P.2020. Fault failure modes, deformation mechanisms, dilation tendency, slip tendency, and conduits v. seals. Geological Society, London, Special Publications, 496, 75–98, https://doi.org/10.1144/SP496-2019-7
    [Google Scholar]
  45. Freeman, B., Yielding, G., Needham, D.T. and Badley, M.E.1998. Fault seal prediction: the gouge ratio method. Geological Society, London, Special Publications, 127, 19–25, https://doi.org/10.1144/GSL.SP.1998.127.01.03
    [Google Scholar]
  46. Fristad, T., Groth, A., Yielding, G. and Freeman, B.1997. Quantitative fault seal prediction: a case study from Oseberg Syd. Norwegian Petroleum Society Special Publications, 7, 107–124, https://doi.org/10.1016/S0928–8937(97)80010-0
    [Google Scholar]
  47. Fulljames, J., Zijerveld, L., Franssen, C., Ingram, G. and Richard, P.1997. Fault seal processes: systematic analyses of fault seals over geological and production timescales. Norwegian Petroleum Society Special Publications, 7, 51–59, https://doi.org/10.1016/S0928-8937(97)80006-9
    [Google Scholar]
  48. Gabrielsen, R.H., Kyrkjebø, R., Faleide, J.I., Fjeldskaar, W. and Kjennerud, T.2001. The Cretaceous post-rift basin configuration of the northern North Sea. Petroleum Geoscience, 7, 137–154, https://doi.org/10.1144/petgeo.7.2.137
    [Google Scholar]
  49. Gassnova2012. Geological Storage of CO2 from Mongstad. Interim Report Johansen Formation. Report TL02-GTL-Z-RA-0001.
    [Google Scholar]
  50. Gassnova2013. Troll Kystnær Subsurface Evaluation Report. Internal report – available on request only.
    [Google Scholar]
  51. Gassnova2016. Feasibility Study for Full-Scale CCS in Norway, https://ccsnorway.com/wp-content/uploads/sites/6/2019/09/feasibilitystudy_fullscale_ccs_norway_2016.pdf
    [Google Scholar]
  52. Geffroy, F., Correia, P., Binet, H., Chautru, J., Renard, D. and Nosjea-Gorgeu, N.2019. Integration of fault location uncertainty in time to depth conversion. In: Proceedings of the 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands, https://doi.org/10.3997/2214-4609.201900743
    [Google Scholar]
  53. Guariguata-Rojas, G.J. and Underhill, J.R.2017. Implications of Early Cenozoic uplift and fault reactivation for carbon storage in the Moray Firth Basin. Interpretation, 5, SS1–SS21, https://doi.org/10.1190/INT-2017-0009.1
    [Google Scholar]
  54. Guillaume, P., Reinier, M., Lambaré, G., Cavalié, A., Adamsen, M.I. and Bruun, B.M.2013. Dip constrained non-linear slope tomography. SEG Technical Program Expanded Abstracts, 2013, 4811–4815, https://doi.org/10.1190/segam2013-0559.1
    [Google Scholar]
  55. Halland, E.K., Gjeldvik, I. et al.2011. CO2 Storage Atlas of the Norwegian North Sea. Energy Procedia, 37, 4919–4926, https://doi.org/10.1016/j.egypro.2013.06.403
    [Google Scholar]
  56. Heidbach, O., Rajabi, M. et al.2018. The World Stress Map database release 2016: crustal stress pattern across scales. Tectonophysics, 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007
    [Google Scholar]
  57. Helland-Hansen, W., Ashton, M., Lømo, L. and Steel, R.1992. Advance and retreat of the Brent delta: recent contributions to the depositional model. Geological Society, London, Special Publications, 61, 109–127, https://doi.org/10.1144/GSL.SP.1992.061.01.07
    [Google Scholar]
  58. Hicks, E.C., Bungum, H. and Lindholm, C.D.2000. Stress inversion of earthquake focal mechanism solutions from onshore and offshore Norway. Norsk Geologisk Tidsskrift, 80, 235–250, https://doi.org/10.1080/00291960051030545
    [Google Scholar]
  59. Holden, N., Osmond, J.L., Mulrooney, M.J., Braathen, A., Skurtveit, E. and Sundal, A.2022. Structural characterization and across-fault seal assessment of the Aurora CO2 storage site, northern North Sea. Petroleum Geoscience, 28, https://doi.org/10.1144/petgeo2022-036
    [Google Scholar]
  60. IEA2021. Net Zero by 2050: A Roadmap for the Global Energy Section. Flagship Report. International Energy Agency (IEA), Paris.
    [Google Scholar]
  61. IPCC2021. Climate Change 2021 – The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V., Zhai, P. et al. (eds) Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781009157896
    [Google Scholar]
  62. Jackson, C.A.-L., Grunhagen, H., Howell, J.A., Larsen, A.L., Andersson, A., Boen, F. and Groth, A.2010. 3D seismic imaging of lower delta-plain beach ridges: lower Brent Group, northern North Sea. Journal of the Geological Society, London, 167, 1225–1236, https://doi.org/10.1144/0016-76492010-053
    [Google Scholar]
  63. Jev, B., Kaars-Sijpesteijn, C., Peters, M., Watts, N. and Wilkie, J.1993. Akaso field, Nigeria: Use of integrated 3-D seismic, fault slicing, clay smearing, and RFT pressure data on fault trapping and dynamic leakage. AAPG Bulletin, 77, 1389–1404, https://doi.org/10.1306/BDFF8EA2-1718-11D7-8645000102C1865D
    [Google Scholar]
  64. Karolytė, R., Johnson, G., Yielding, G. and Gilfillan, S.M.2020. Fault seal modelling – the influence of fluid properties on fault sealing capacity in hydrocarbon and CO2 systems. Petroleum Geoscience, 26, 481–497, https://doi.org/10.1144/petgeo2019-126
    [Google Scholar]
  65. Keiding, M., Kreemer, C., Lindholm, C., Gradmann, S., Olesen, O. and Kierulf, H.2015. A comparison of strain rates and seismicity for Fennoscandia: depth dependency of deformation from glacial isostatic adjustment. Geophysical Journal International, 202, 1021–1028, https://doi.org/10.1093/gji/ggv207
    [Google Scholar]
  66. Khani, H.F. and Back, S.2015. The influence of differential sedimentary loading and compaction on the development of a deltaic rollover. Marine and Petroleum Geology, 59, 136–149, https://doi.org/10.1016/j.marpetgeo.2014.08.005
    [Google Scholar]
  67. Kim, Y.-S. and Sanderson, D.J.2005. The relationship between displacement and length of faults: a review. Earth-Science Reviews, 68, 317–334, https://doi.org/10.1016/j.earscirev.2004.06.003
    [Google Scholar]
  68. Knipe, R.J.1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 81, 187–195, https://doi.org/10.1306/522B42DF-1727-11D7-8645000102C1865D
    [Google Scholar]
  69. Knott, S.D.1993. Fault seal analysis in the North Sea. AAPG Bulletin, 77, 778–792, https://doi.org/10.1306/BDFF8D58-1718-11D7-8645000102C1865D
    [Google Scholar]
  70. Kyrkjebø, R., Gabrielsen, R. and Faleide, J.2004. Unconformities related to the Jurassic–Cretaceous synrift–post-rift transition of the northern North Sea. Journal of the Geological Society, London, 161, 1–17, https://doi.org/10.1144/0016-764903-051
    [Google Scholar]
  71. Lindholm, C.D., Bungum, H., Hicks, E. and Villagran, M.2000. Crustal stress and tectonics in Norwegian regions determined from earthquake focal mechanisms. Geological Society, London, Special Publications, 167, 429–439, https://doi.org/10.1144/GSL.SP.2000.167.01.17
    [Google Scholar]
  72. Lindsay, N., Murphy, F., Walsh, J. and Watterson, J.1993. Outcrop studies of shale smears on fault surfaces. International Association of Sedimentologists Special Publications, 15, 113–123, https://doi.org/10.1002/9781444303957.ch6
    [Google Scholar]
  73. Lyon, P.J., Boult, P.J., Mitchell, A. and Hillis, R.R.2004. Improving fault geometry interpretation through ‘pseudo-depth’ conversion of seismic data in the Penola Trough, Otway Basin. In:Boult, P., Johns, D. and Lang, S. (eds) Eastern Australian Basin Symposium II. Petroleum Exploration Society of Australia (PESA), Adelaide, Australia, 395–706.
    [Google Scholar]
  74. Lyon, P.J., Boult, P.J., Hillis, R.R. and Mildren, S.D.2005. Sealing by shale gouge and subsequent seal breach by reactivation: A case study of the Zema Prospect, Otway Basin. AAPG Hedberg Series, 2, 179–197, https://doi.org/10.1306/1060764H23169
    [Google Scholar]
  75. Magee, C., Love, V. et al.2023. Quantifying dyke-induced graben and dyke structure using 3D seismic reflection data and the role of interpretation bias. Tektonika, 1, 32–53, https://doi.org/10.55575/tektonika2023.1.2.25
    [Google Scholar]
  76. Manzocchi, T., Childs, C. and Walsh, J.2010. Faults and fault properties in hydrocarbon flow models. Geofluids, 10, 94–113, https://doi.org/10.1111/j.1468-8123.2010.00283.x
    [Google Scholar]
  77. Martinez, C., Chiarella, D., Jackson, C.L., Rennie, H. and Scarselli, N.2024. Syn-rift tectono-stratigraphic development of the Thebe-0 fault system, Exmouth Plateau, offshore NW Australia: The role of fault-scarp degradation. Basin Research, 36, e12842, https://doi.org/10.1111/bre.12842
    [Google Scholar]
  78. Meng, J., Pashin, J., Chandra, A., Xue, L., Sholanke, S. and Spears, J.2020. Structural framework and fault analysis in the east-central Gulf of Mexico shelf: Implications for offshore CO2 storage. Journal of Structural Geology, 134, https://doi.org/10.1016/j.jsg.2020.104020
    [Google Scholar]
  79. Michie, E.A.H. and Braathen, A.2024. How displacement analysis may aid fault risking strategies for CO2 storage. Basin Research, 36, e12807, https://doi.org/10.1111/bre.12807
    [Google Scholar]
  80. Michie, E.A.H., Mulrooney, M.J. and Braathen, A.2021. Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage. Solid Earth, 12, 1259–1286, https://doi.org/10.5194/se-12-1259-2021
    [Google Scholar]
  81. Mildren, S.D., Hillis, R.R., Lyon, P.J., Meyer, J.J., Dewhurst, D.N. and Boult, P.J. 2005. FAST: a new technique for geomechanical assessment of the risk of reactivation-related breach of fault seals. AAPG Hedberg Series, 2, 73–85, https://doi.org/10.1306/1060757H23163
    [Google Scholar]
  82. Miocic, J., Johnson, G. and Bond, C.E.2019. Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects. Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019
    [Google Scholar]
  83. Morris, A., Ferrill, D.A. and Henderson, D.B.1996. Slip-tendency analysis and fault reactivation. Geology, 24, 275–278, https://doi.org/10.1130/0091-7613(1996)024%3C0275:STAAFR%3E2.3.CO;2
    [Google Scholar]
  84. Mulrooney, M.J., Leutscher, J. and Braathen, A.2017. A 3D structural analysis of the Goliat field, Barents Sea, Norway. Marine and Petroleum Geology, 86, 192–212, https://doi.org/10.1016/j.marpetgeo.2017.05.038
    [Google Scholar]
  85. Mulrooney, M.J., Osmond, J.L., Skurtveit, E., Faleide, J.I. and Braathen, A.2020. Structural analysis of the Smeaheia fault block, a potential CO2 storage site, northern Horda Platform, North Sea. Marine and Petroleum Geology, 121, 1–33, https://doi.org/10.1016/j.marpetgeo.2020.104598
    [Google Scholar]
  86. Nottvedt, A., Gabrielsen, R. and Steel, R.1995. Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea. Marine and Petroleum Geology, 12, 881–901, https://doi.org/10.1016/0264-8172(95)98853-W
    [Google Scholar]
  87. Osmond, J., Mulrooney, M.J., Holden, N., Skurtveit, E., Faleide, J.I. and Braathen, A.2022. Structural traps and seals for expanding CO2 storage in the northern Horda Platform, North Sea. AAPG Bulletin, 106, 1711–1752, https://doi.org/10.1306/03222221110
    [Google Scholar]
  88. Phillips, T.B., Fazlikhani, H. et al.2019. The influence of structural inheritance and multiphase extension on rift development, the Northern North Sea. Tectonics, 38, 4099–4126, https://doi.org/10.1029/2019tc005756
    [Google Scholar]
  89. Pickering, G., Peacock, D.C. and Lee, J.1997. Modeling tip zones to predict the throw and length characteristics of faults. AAPG Bulletin, 81, 82–99, https://doi.org/10.1306/522B4299-1727-11D7-8645000102C1865D
    [Google Scholar]
  90. Polson, D. and Curtis, A.2010. Dynamics of uncertainty in geological interpretation. Journal of the Geological Society, London, 167, 5–10, https://doi.org/10.1144/0016-76492009-055
    [Google Scholar]
  91. Rahman, M.J., Choi, J.C., Fawad, M. and Mondol, N.H.2021. Probabilistic analysis of Vette fault stability in potential CO2 storage site Smeaheia, offshore Norway. International Journal of Greenhouse Gas Control, 108, https://doi.org/10.1016/j.ijggc.2021.103315
    [Google Scholar]
  92. Randen, T. and Sønneland, L.2005. Atlas of 3D seismic attributes. In:Iske, A. and Sønneland, L. (eds) Mathematical Methods and Modelling in Hydrocarbon Exploration and Production. Mathematics in Industry, 7. Springer, Berlin, 23–46, https://doi.org/10.1007/3-540-26493-0_2
    [Google Scholar]
  93. Ravnås, R. and Steel, R.1997. Contrasting styles of Late Jurassic syn-rift turbidite sedimentation: a comparative study of the Magnus and Oseberg areas, northern North Sea. Marine and Petroleum Geology, 14, 417–449, https://doi.org/10.1016/S0264-8172(97)00010-X
    [Google Scholar]
  94. Ravnås, R., Nøttvedt, A., Steel, R. and Windelstad, J.2000. Syn-rift sedimentary architectures in the Northern North Sea. Geological Society, London, Special Publications, 167, 133–177, https://doi.org/10.1144/GSL.SP.2000.167.01.07
    [Google Scholar]
  95. Rider, M.2000. The Geological Interpretation of Well Logs. 2nd edn. Rider–French Consulting Ltd, Sutherland, UK, 126–128.
    [Google Scholar]
  96. Roberts, A., Yielding, G., Kusznir, N., Walker, I. and Dorn-Lopez, D.1993. Mesozoic extension in the North Sea: constraints from flexural backstripping, forward modelling and fault populations. Geological Society, London, Petroleum Geology Conference Series, 4, 1123–1136, https://doi.org/10.1144/0041123
    [Google Scholar]
  97. Roberts, A., Yielding, G., Kusznir, N., Walker, I. and Dorn-Lopez, D.1995. Quantitative analysis of Triassic extension in the northern Viking Graben. Journal of the Geological Society, London, 152, 15–26, https://doi.org/10.1144/gsjgs.152.1.0015
    [Google Scholar]
  98. Rogelj, J., Den Elzen, M. et al.2016. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534, 631–639, https://doi.org/10.1038/nature18307
    [Google Scholar]
  99. Rutqvist, J., Rinaldi, A.P. et al.2016. Fault activation and induced seismicity in geological carbon storage – Lessons learned from recent modeling studies. Journal of Rock Mechanics and Geotechnical Engineering, 8, 789–804, https://doi.org/10.1016/j.jrmge.2016.09.001
    [Google Scholar]
  100. Schaaf, A. and Bond, C.E.2019. Quantification of uncertainty in 3-D seismic interpretation: implications for deterministic and stochastic geomodeling and machine learning. Solid Earth, 10, 1049–1061, https://doi.org/10.5194/se-10-1049-2019
    [Google Scholar]
  101. Schlische, R.W.1995. Geometry and origin of fault-related folds in extensional settings. AAPG Bulletin, 79, 1661–1678, https://doi.org/10.1306/7834DE4A-1721-11D7-8645000102C1865D
    [Google Scholar]
  102. Schueller, S., Braathen, A., Fossen, H. and Tveranger, J.2013. Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: Statistical analysis of field data. Journal of Structural Geology, 52, 148–162, https://doi.org/10.1016/j.jsg.2013.03.013
    [Google Scholar]
  103. Serck, C.S. and Braathen, A.2019. Extensional fault and fold growth: impact on accommodation evolution and sedimentary infill. Basin Research, 31, 967–990, https://doi.org/10.1111/bre.12353
    [Google Scholar]
  104. Skurtveit, E., Choi, J.C., Osmond, J., Mulrooney, M. and Braathen, A.2018. 3D fault integrity screening for Smeaheia CO2 injection site. In: 14th Greenhouse Gas Control Technologies Conference Melbourne, 21–26 October 2018 (GHGT-14), https://dx.doi.org/10.2139/ssrn.3366335
    [Google Scholar]
  105. Smallwood, J.R.2002. Use of V0–K depth conversion from shelf to deep-water: how deep is that brightspot?First Break, 20, 99–107, https://doi.org/10.1046/j.1365-2397.2002.00243.x
    [Google Scholar]
  106. Statoil2016. Feasibility Study. Planning and Design of a CO2 Storage Facility on the Norwegian Continental Shelf. Statoil, Stavanger, Norway.
    [Google Scholar]
  107. Steel, R.1993. Triassic–Jurassic megasequence stratigraphy in the Northern North Sea: rift to post-rift evolution. Geological Society, London, Petroleum Geology Conference Series, 4, 299–315, https://doi.org/10.1144/0040299
    [Google Scholar]
  108. Stewart, S.2012. Interpretation validation on vertically exaggerated reflection seismic sections. Journal of Structural Geology, 41, 38–46, https://doi.org/10.1016/j.jsg.2012.02.021
    [Google Scholar]
  109. Streit, J.E. and Hillis, R.R.2004. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 29, 1445–1456, https://doi.org/10.1016/j.energy.2004.03.078
    [Google Scholar]
  110. Thompson, N., Andrews, J.S., Wu, L. and Meneguolo, R.2022. Characterization of the in-situ stress on the Horda platform – A study from the Northern Lights Eos well. International Journal of Greenhouse Gas Control, 114, https://doi.org/10.1016/j.ijggc.2022.103580
    [Google Scholar]
  111. Thore, P., Shtuka, A., Lecour, M., Ait-Ettajer, T. and Cognot, R.2002. Structural uncertainties: determination, management, and applications. Geophysics, 67, 840–852, https://doi.org/10.1190/1.1484528
    [Google Scholar]
  112. Thorsen, C.E.1963. Age of growth faulting in southeast Louisiana. Gulf Coast Association of Geological Societies Transactions, 13, 103–110.
    [Google Scholar]
  113. Tomasso, M., Underhill, J.R., Hodgkinson, R.A. and Young, M.J.2008. Structural styles and depositional architecture in the Triassic of the Ninian and Alwyn North fields: Implications for basin development and prospectivity in the Northern North Sea. Marine and Petroleum Geology, 25, 588–605, https://doi.org/10.1016/j.marpetgeo.2007.11.007
    [Google Scholar]
  114. Torabi, A. and Berg, S.S.2011. Scaling of fault attributes: a review. Marine and Petroleum Geology, 28, 1444–1460, https://doi.org/10.1016/j.marpetgeo.2011.04.003
    [Google Scholar]
  115. Torp, T.A. and Gale, J.2004. Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. Energy, 29, 1361–1369, https://doi.org/10.1016/j.energy.2004.03.104
    [Google Scholar]
  116. Torsvik, T.H., Carlos, D., Mosar, J., Cocks, L.R.M. and Malme, T.2002. Global reconstructions and North Atlantic paleogeography 440 Ma to recent. In:Eide, E. (ed.) BATLAS – Mid Norway Plate Reconstruction Atlas with Global and Atlantic Perspectives. Geological Survey of Norway, Trondheim, 18–39.
    [Google Scholar]
  117. Torvela, T. and Bond, C.E.2011. Do experts use idealised structural models? Insights from a deepwater fold–thrust belt. Journal of Structural Geology, 33, 51–58, https://doi.org/10.1016/j.jsg.2010.10.002
    [Google Scholar]
  118. Totake, Y., Butler, R.W. and Bond, C.E.2017. Structural validation as an input into seismic depth conversion to decrease assigned structural uncertainty. Journal of Structural Geology, 95, 32–47, https://doi.org/10.1016/j.jsg.2016.12.007
    [Google Scholar]
  119. Trinchero, E.2000. The fault shadow problem as an interpretation pitfall. The Leading Edge, 19, 132–135, https://doi.org/10.1190/1.1438549
    [Google Scholar]
  120. Underhill, J.R. and Partington, M.1993. Jurassic thermal doming and deflation in the North Sea: implications of the sequence stratigraphic evidence. Geological Society, London, Petroleum Geology Conference Series, 4, 337–345, https://doi.org/10.1144/0040337
    [Google Scholar]
  121. Van den Bogert, P. and van Eijs, R.2020. Why Mohr-circle analyses may underestimate the risk of fault reactivation in depleting reservoirs. International Journal of Rock Mechanics and Mining Sciences, 136, https://doi.org/10.1016/j.ijrmms.2020.104502
    [Google Scholar]
  122. Veeken, P.P.2013. Seismic Stratigraphy and Depositional Facies Models. . European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands.
    [Google Scholar]
  123. Velásquez, A.J. and Alfonso, H.2018. Depth-conversion techniques and challenges in complex sub-Andean provinces. Interpretation, 6, T209–T229, https://doi.org/10.1190/INT-2017-0046.1
    [Google Scholar]
  124. Watts, N.1987. Theoretical aspects of cap-rock and fault seals for single- and two-phase hydrocarbon columns. Marine and Petroleum Geology, 4, 274–307, https://doi.org/10.1016/0264-8172(87)90008-0
    [Google Scholar]
  125. Whipp, P., Jackson, C.L., Gawthorpe, R., Dreyer, T. and Quinn, D.2014. Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26, 523–549, https://doi.org/10.1111/bre.12050
    [Google Scholar]
  126. Wu, L., Thorsen, R., Ringrose, P., Ottesen, S. and Hartvedt, K.2021. Significance of fault seal in assessing CO2 storage capacity and leakage risks – an example from offshore Norway. Petroleum Geoscience, 27, https://doi.org/10.1144/petgeo2020-102
    [Google Scholar]
  127. Würtzen, C.L., Osmond, J.L., Faleide, J.I., Nystuen, J.P., Anell, I.M. and Midtkandal, I.2021. Syn-to post-rift alluvial basin fill: Seismic stratigraphic analysis of Permian–Triassic deposition in the Horda Platform, Norway. Basin Research, 34, 883–912, https://doi.org/10.1111/bre.12644
    [Google Scholar]
  128. Xie, Y., Zhou, Z. et al.2016. Orthorhombic full-waveform inversion for wide-azimuth data imaging. SEG Technical Program Expanded Abstracts, 2016, 1289–1293, https://doi.org/10.1190/segam2016-13822505.1
    [Google Scholar]
  129. Yielding, G.2002. Shale gouge ratio – calibration by geohistory. Norwegian Petroleum Society Special Publications, 11, 1–15, https://doi.org/10.1016/S0928-8937(02)80003-0
    [Google Scholar]
  130. Yielding, G., Freeman, B. and Needham, D.T.1997. Quantitative fault seal prediction. AAPG Bulletin, 81, 897–917, https://doi.org/10.1306/522B498D-1727-11D7-8645000102C1865D
    [Google Scholar]
  131. Yielding, G., Bretan, P. and Freeman, B.2010. Fault seal calibration: a brief review. Geological Society, London, Special Publications, 347, 243–255, https://doi.org/10.1144/SP347.14
    [Google Scholar]
  132. Yongdeng, X., Chansane, A., Kaewtapan, J., Guo, M. and Ryan, K.2018. Fault shadow correction by advanced tomographic velocity model building. Search and Discovery Article #90336, AAPG Asia Pacific Region, the 4th AAPG/EAGE/MGS Myanmar Oil and Gas Conference, Myanmar: A Global Oil and Gas Hotspot: Unleashing the Petroleum Systems Potential, 13–15 November 2018, Yangon, Myanmar.
    [Google Scholar]
  133. Ziegler, P.1990. Tectonic and palaeogeographic development of the North Sea rift system. In: Blundell, D.J. and Gibbs, A.D. (eds) Tectonic Evolution of the North Sea Rifts. Clarendon Press, Oxford, UK, 1–36.
    [Google Scholar]
  134. Zoback, M.L.1992. First-and second-order patterns of stress in the lithosphere: the World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97, 11 703–11 728, https://doi.org/10.1029/92JB00132
    [Google Scholar]
  135. Zoback, M.D.2010. Reservoir Geomechanics. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  136. Zweigel, P. and Hamborg, M.2002. The Effect of Time–Depth Conversion Procedure on Key Seismic Horizons Relevant for Underground CO2 Storage in the Sleipner Field (North Sea). SINTEF Petroleum Research Report 33.5324.00/01/02. SINTEF, Trondheim, Norway.
    [Google Scholar]
/content/journals/10.1144/geoenergy2024-006
Loading
/content/journals/10.1144/geoenergy2024-006
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error