1887
Volume 2, Issue 1
  • E-ISSN:
PDF

Abstract

In August 2022, the world's longest running offshore industrial CO injection project celebrated its 26-year anniversary. During these years, the Sleipner CO injection project has been invaluable in demonstrating that offshore CO storage is feasible, safe, and efficient. We will here show how time-lapse seismic monitoring of the CO plume development has revealed depositional architecture in the Utsira Formation, and how thin mudstone layers have contributed to distributing the CO in a larger rock volume, promoting trapping by dissolution. The relatively shallow depth (800–1000 m) of Utsira Formation in the Sleipner area also makes the Sleipner CO injection site a good proxy for understanding the effects of overburden stratigraphy for deeper injection sites, giving important knowledge of detectability of thin, shallow CO accumulations. Finally, we will show how the experience from Sleipner CO injection has built confidence when planning monitoring programmes for future CO injection sites.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2024-015
2024-06-19
2025-05-16
Loading full text...

Full text loading...

/deliver/fulltext/geoenergy/2/1/geoenergy2024-015.html?itemId=/content/journals/10.1144/geoenergy2024-015&mimeType=html&fmt=ahah

References

  1. Alnes, H., Eiken, O. and Stenvold, T.2008. Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73, WA 1555–WA 161, https://doi.org/10.1190/1.2991119
    [Google Scholar]
  2. Alnes, H., Eiken, O., Nooner, S., Sasagawa, G., Stenvold, T. and Zumberge, M.2011. Results from Sleipner gravity monitoring: updated density and temperature distribution of the CO2 plume. Energy Procedia, 4, 5504–5511, GHGT10, https://doi.org/10.1016/j.egypro.2011.02.536
    [Google Scholar]
  3. Arts, R., Eiken, O., Chadwick, A., Zweigel, P., van der Meer, L. and Zinszner, B.2002. Monitoring of CO2 injected at Sleipner using time lapse seismic data. In:Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Pergamon, 347–352, https://doi.org/10.1016/j.energy.2004.03.072
    [Google Scholar]
  4. Arts, R., Chadwick, A., Eiken, O., Thibeau, S. and Nooner, S.2008. Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26, 65–72, https://doi.org/10.3997/1365-2397.26.1115.27807
    [Google Scholar]
  5. Baklid, A., Korbøl, R. and Owren, G.1996. Sleipner Vest CO2 disposal, CO2 injection into a shallow underground acquifer. SPE paper 36600. SPE Annual Technical Conference and Exhibition, 6–9 October 1996, Denver, Colorado, https://doi.org/10.2118/36600-MS
    [Google Scholar]
  6. Boait, F., White, N.J., Bickle, M.J., Chadwick, R.A., Neufeld, J.A. and Huppert, H.E.2012. Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea. Journal of Geophysical Research, 117, B03309, https://doi.org/10.1029/2011JB008603
    [Google Scholar]
  7. Chadwick, R.A., Holloway, S., Kirby, G.A., Gregersen, U. and Johannessen, P.N.2000. The Utsira Sand, Central North Sea – an assessment of its potential for regional CO2 disposal. In:Williams, D., Durie, B., McMullan, P., Paulson, C. and Smith, A. (eds) Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia. CSIRO Publishing, 349–354, https://doi.org/10.1071/9780643105027
    [Google Scholar]
  8. Chadwick, R.A., Arts, R., Eiken, O., Kirby, G.A., Lindeberg, E. and Zweigel, P.2004. 4D seismic imaging of an injected CO2 plume at the Sleipner Field, central North Sea. In:Davies, R.J., Cartwright, J.A., Stewart, S.A., Lappin, M. and Underhill, J.R. (eds) 3D Seismic Technology: Application to the Exploration of Sedimentary Basins. Geological Society, London, Memoir, 29, 311–320, https://doi.org/10.1144/GSL.MEM.2004.029.01.29
    [Google Scholar]
  9. Chadwick, R.A., Williams, G.A., Williams, J.D.O. and Noy, D.J.2012. Measuring pressure performance of a large saline aquifer during industrial-scale CO2 injection: the Utsira Sand, Norwegian North Sea. International Journal of Greenhouse Gas Control, 10, 374–388, https://doi.org/10.1016/j.ijggc.2012.06.022
    [Google Scholar]
  10. Couëslan, M.L., Butsch, R., Will, R. and Locke, R.A.2014. Integrated reservoir monitoring at the Illinois Basin – Decatur Project. Energy Procedia, 63, 2836–2847, https://doi.org/10.1016/j.egypro.2014.11.306
    [Google Scholar]
  11. Daley, T.M., Hendrickson, J. and Queen, J.H.2014. Monitoring CO2 storage at cranfield, mississippi with time-lapse offset VSP – using integration and modeling to reduce uncertainty. Energy Procedia, 63, 4240–4248, https://doi.org/10.1016/j.egypro.2014.11.459
    [Google Scholar]
  12. Dance, T., LaForce, T., Glubokovskikh, S., Ennis-King, J. and Pevzner, R.2019. Illuminating the geology: Post-injection reservoir characterisation of the CO2CRC Otway site. International Journal of Greenhouse Gas Control, 86, 146–157, https://doi.org/10.1016/j.ijggc.2019.05.004
    [Google Scholar]
  13. Dehghan-Niri, R., Pedersen, A.S., Furre, A.-K., Thompson, M., Westerdahl, H., David, S. and Hibben, T.2022. Monitoring CO2 plumes with mini streamers, is there potential?Conference Proceedings, 83rd EAGE Annual Conference & Exhibition, June 2022, Madrid, Spain, https://doi.org/10.3997/2214-4609.202210398
    [Google Scholar]
  14. Eiken, O., Stenvold, T., Zumberge, M., Alnes, H. and Sasgawa, G.2008. Gravimetric monitoring of gas production from the Troll field. Geophysics, 73, https://doi.org/10.1190/1.2978166
    [Google Scholar]
  15. El-kaseeh, G., Czoski, P., Will, R., Balch, R., Ampomah, W. and Li, X.2018. Time-lapse vertical seismic profile for CO2 monitoring in carbon capture, utilization, and sequestration/EOR, Farnsworth project. SEG Technical Program Expanded Abstracts, Anaheim, CA, USA, 5377–5381, https://doi.org/10.1190/segam2018-2995747.1
    [Google Scholar]
  16. Finley, R.J., Frailey, S.M., Leetaru, H.E., Senel, O., Couëslan, M.L. and Scott, M.2013. Early operational experience at a one-million tonne CCS Demonstration Project, Decatur, Illinois, USA. Energy Procedia, 37, 6149–6155, https://doi.org/10.1016/j.egypro.2013.06.544
    [Google Scholar]
  17. Furre, A.-K. and Eiken, O.2014. Dual sensor streamer technology used in Sleipner CO2 injection monitoring. Geophysical Prospecting, 62, 1075–1088, https://doi.org/10.1111/1365-2478.12120
    [Google Scholar]
  18. Furre, A.-K., Kjær, A. and Eiken, O.2015. CO2-induced time shifts at Sleipner. Interpretation, 3, SS23–SS35, https://doi.org/10.1190/INT-2014-0225.1
    [Google Scholar]
  19. Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J.N. and Kiær, A.F.2017. 20 years of monitoring CO2-injection at Sleipner. Energy Procedia, 114, 3916–3926, https://doi.org/10.1016/j.egypro.2017.03.1523
    [Google Scholar]
  20. Galloway, W.E.2002. Paleogeographic setting and depositional architecture of a sand-dominated shelf depositional system, Miocene Utsira Formation, North Sea Basin. Journal of Sedimentary Research, 72, 476–490, https://doi.org/10.1306/110801720476
    [Google Scholar]
  21. Gassmann, F.1951. Über die Elastizität poröser Medien. Veirteljahrsschrift der Naturforschenden Gesellschaft in Zzirich, 96, 1–23, https://www.ngzh.ch/archiv/1951_96/96_1/96_2.pdf
    [Google Scholar]
  22. Gregersen, U. and Johannessen, P.N.2007. Distribution of the Neogene Utsira Sand and the succeeding deposits in the Viking Graben area, North Sea. Marine and Petroleum Geology, 24, 591–606, https://doi.org/10.1016/j.marpetgeo.2007.04.006
    [Google Scholar]
  23. Gregersen, U., Michelsen, O. and Sørensen, J.C.1997. Stratigraphy and facies distribution of the Utsira Formation and the Pliocene sequences in the northern North Sea. Marine and Petroleum Geology, 14, 893–914, https://doi.org/10.1016/S0264-8172(97)00036-6
    [Google Scholar]
  24. Harvey, S., Hopkins, J., Kuehl, H., O'Brien, S. and Mateeva, A.2022. Quest CCS facility: time-lapse seismic campaigns. International Journal of Greenhouse Gas Control, 117, https://doi.org/10.1016/j.ijggc.2022.103665
    [Google Scholar]
  25. Kiær, A.2015. Fitting top seal topography and CO2 layer thickness to time-lapse seismic amplitude maps at Sleipner. Interpretation, 3, SM47–SM55, https://doi.org/10.1190/INT-2014-0127.1
    [Google Scholar]
  26. Kolkman-Quinn, B.J.2022. Time-Lapse VSP Monitoring of CO2 Sequestration at the CaMI Field Research Station. Master's thesis, University of Calgary, Calgary, AB, https://doi.org/10.11575/PRISM/39683
    [Google Scholar]
  27. Leslie, R., Cavanagh, A.J., Haszeldine, R.S., Johnson, G., Pontén, A., Ringrose, P.S. and Gilfillan, S.M.V.2022. Short or long timescales for dissolution trapping in CO2 storage?16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23–27 October 2022, Lyon, France.
    [Google Scholar]
  28. Lindeberg, E., Zweigel, P., Bergmo, P., Ghaderi, A. and Lothe, A.2000. Prediction of CO2 dispersal pattern improved by geology and reservoir simulation and verified by time lapse seismic. In:Williams, D., Durie, B., McMullan, P., Paulson, C. and Smith, A. (eds) Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia. CSIRO Publishing, 372–377, https://doi.org/10.1071/9780643105027
    [Google Scholar]
  29. Lloyd, C., Huuse, M., Barrett, B.J., Stewart, M.A. and Newton, A.M.2021. A regional CO2 containment assessment of the northern Utsira Formation seal and overburden, northern North Sea. Basin Research, 33, 1985–2017, https://doi.org/10.1111/bre.12545
    [Google Scholar]
  30. Lumley, D.2001. Time-lapse seismic monitoring. Geophysics, 66, https://doi.org/10.1190/1.1444921
    [Google Scholar]
  31. Mispel, J., Furre, A., Sollid, A. and Maaø, F.2019. High frequency 3D FWI at Sleipner: a closer look at the CO2 plume. 81st EAGE Conference and Exhibition 2019, London, UK,June 2019, https://doi.org/10.3997/2214-4609.201901566
    [Google Scholar]
  32. Nicoll, G.D.2011. Evaluation of the Nordland Group Overburden as an Effective Seal for the Sleipner CO2 Storage Site (offshore Norway) Using Analytical and Stochastic Modelling Techniques. PhD thesis, University of Edinburgh, http://hdl.handle.net/1842/7813
    [Google Scholar]
  33. Piasecki, S., Gregersen, U. and Johannessen, P.N.2002. Lower Pliocene dinoflagellate cysts from cored Utsira Formation in the Viking Graben, northern North Sea. Marine and Petroleum Geology, 19, 55–67, https://doi.org/10.1016/S0264-8172(01)00053-8
    [Google Scholar]
  34. Ringrose, P., Furre, A.-K. et al.2021. Storage of carbon dioxide in saline aquifers: physicochemical processes, key constraints, and scale-up potential. Annual Review of Chemical and Biomolecular Engineering, 12, 471–494, https://doi.org/10.1146/annurev-chembioeng-093020-091447
    [Google Scholar]
  35. Rundberg, Y. and Eidvin, T.2005. Controls on depositional history and architecture of the Oligocene–Miocene succession, northern North Sea Basin. In:Wandas, B., Nystuen, J.P. et al. (eds) Onshore–Offshore Relationships on the North Atlantic Margin. NPF Special Publication, 12. Elsevier B.V., Amsterdam, Norwegian Petroleum Society (NPF), 207–239, https://doi.org/10.1016/S0928-8937(05)80050-5
    [Google Scholar]
  36. Rutledge, J.2011. Southwest Regional Partnership on Carbon Sequestration Phase II. United States: Technical report, https://doi.org/10.2172/1029292
    [Google Scholar]
  37. Sawada, Y., Tanaka, J., Tanase, D., Sasaki, T. and Suzuki, C.2021. Tomakomai Ccs Demonstration Project – achievements and future outlook, TCCS–11. CO2 Capture, Transport and Storage.Trondheim 22–23 June 2021 Short Papers from the 11th International Trondheim CCS Conference, Norway, https://hdl.handle.net/11250/2779936
    [Google Scholar]
  38. Span, R. and Wagner, W.1996. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 Mpa. Journal of Physical and Chemical Reference Data, 25, 1509, https://doi.org/10.1063/1.555991
    [Google Scholar]
  39. Trevisan, L., Pini, R., Cihan, A., Birkholzer, J.T., Zhou, Q., González-Nicolás, A. and Illangasekare, I.2017. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments. Water Resources Research, 53, 485–502, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016WR019749; https://doi.org/10.1002/2016WR019749
    [Google Scholar]
  40. White, J.C., Williams, G. and Chadwick, A.2018. Seismic amplitude analysis provides new insights into CO2 plume morphology at the Snøhvit CO2 injection operation. International Journal of Greenhouse Gas Control, 79, 313–322, ISSN 1750-5836, https://doi.org/10.1016/j.ijggc.2018.05.024
    [Google Scholar]
  41. Wierzchowska, M., Alnes, H., Oukili, J. and Otterbein, C.2021. Broadband processing improves 4D repeatability and resolution at the Sleipner CO2 storage project, North Sea. 82nd EAGE Annual Conference & Exhibition, October 2021, Amsterdam, https://doi.org/10.3997/2214-4609.202113093
    [Google Scholar]
  42. Williams, G. and Chadwick, A.2012. Quantitative seismic analysis of a thin layer of CO2 in the Sleipner injection plume. Geophysics, 77, R245–R256, https://doi.org/10.1190/geo2011-0449.1
    [Google Scholar]
  43. Williams, G. and Chadwick, A.2021. Influence of reservoir-scale heterogeneities on the growth, evolution and migration of a CO2 plume at the Sleipner Field, Norwegian North Sea. International Journal of Greenhouse Gas Control, 106, 103260, https://doi.org/10.1016/j.ijggc.2021.103260
    [Google Scholar]
  44. Wipki, M., Ivanova, A. et al.2016. Monitoring concept for CO2 storage at the Ketzin Pilot Site, Germany – post-injection continuation towards transfer of liability. Energy Procedia, 97, 348–355, https://doi.org/10.1016/j.egypro.2016.10.017
    [Google Scholar]
  45. Wood, A.B.1955. A Textbook of Sound. The MacMillan Co., New York. (OCoLC)551321714, OCLC Number: 1359085.
    [Google Scholar]
  46. Worth, K., White, D. et al.2017. Aquistore: year one – injection, data, results. Energy Procedia, 114, 5624–5635, https://doi.org/10.1016/j.egypro.2017.03.1701
    [Google Scholar]
  47. Zweigel, P., Hamborg, M., Arts, R., Lothe, A., Sylta, Ø. and Tømmerås, A.2000. Prediction of migration of CO2 injected into an underground depository: reservoir geology and migration modelling in the Sleipner case (North Sea). In:Williams, D.J., Durie, R.A. et al. (eds) Greenhouse Gas Control Technologies. CSIRO Publishing, Collingwood, Australia, 360–365, https://doi.org/10.1071/9780643105027
    [Google Scholar]
/content/journals/10.1144/geoenergy2024-015
Loading
/content/journals/10.1144/geoenergy2024-015
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error