1887
Volume 3, Issue 1
  • E-ISSN:
PDF

Abstract

A review of discontinuity self-sealing mechanisms in argillaceous media is presented. Argillaceous rocks cover a range of siliceous materials generally defined by their particle size (<0.063 mm), composition, and the quantity and type of the clay minerals present. These properties have a strong influence on their material, rock mass and hydrogeological behaviour. In the context of geological disposal of radioactive waste in England and Wales currently (2024), the Mercia Mudstone Group and Ancholme Group are being considered as potential host rocks. These rocks are potentially suitable for the isolation and containment of radioactive waste due to their low primary permeability and potential for discontinuities to self-seal, thereby reducing secondary permeability. The ability of discontinuities to self-seal is a function of lithology, mineralogy, strength, stiffness, groundwater, groundwater chemistry and the state of stress. These properties are strongly affected by depositional provenance, geological history and depth of burial. The processes and mechanisms that lead to self-sealing include swelling, creep, shear, slaking and precipitation of minerals. Self-sealing, therefore, is an important factor influencing the suitability of argillaceous media as a potential host rock for geological disposal of radioactive waste as part of the multi-barrier system.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/geoenergy2024-021
2025-05-08
2025-05-24
Loading full text...

Full text loading...

/deliver/fulltext/geoenergy/3/1/geoenergy2024-021.html?itemId=/content/journals/10.1144/geoenergy2024-021&mimeType=html&fmt=ahah

References

  1. Alzamel, M., Fall, M. and Haruna, S.2022. Swelling ability and behaviour of bentonite-based materials for deep repository engineered barrier systems: influence of physical, chemical and thermal factors. Journal of Rock Mechanics and Geotechnical Engineering, 14, 689–702, doi: 10.1016/j.jrmge.2021.11.00910.1016/j.jrmge.2021.11.009
    https://doi.org/10.1016/j.jrmge.2021.11.009 [Google Scholar]
  2. Armand, G., Noiret, A., Zghondi, J. and Seyedi, D.2013. Short- and long-term behaviors of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne Underground Research Laboratory. Journal of Rock Mechanics and Geotechnical Engineering, 5, 221–230, doi: 10.1016/j.jrmge.2013.05.00510.1016/j.jrmge.2013.05.005
    https://doi.org/10.1016/j.jrmge.2013.05.005 [Google Scholar]
  3. Armand, G., Conil, N., Talandier, J. and Seyedi, D.M.2017. Fundamental aspects of the hydromechanical behaviour of Callovo-Oxfordian claystone: from experimental studies to model calibration and validation. Computers and Geotechnics, 85, 277–286, doi: 10.1016/j.compgeo.2016.06.00310.1016/j.compgeo.2016.06.003
    https://doi.org/10.1016/j.compgeo.2016.06.003 [Google Scholar]
  4. Armitage, P.J., Worden, R.H., Faulkner, D.R., Butcher, A.R. and Espie, A.A.2016. Permeability of the Mercia Mudstone: suitability as caprock to carbon capture and storage sites. Geofluids, 16, 26–42, doi: 10.1111/gfl.1213410.1111/gfl.12134
    https://doi.org/10.1111/gfl.12134 [Google Scholar]
  5. Auvray, C., Morlot, C., Fourreau, E. and Talandier, J.2015. X-ray tomography applied to self-sealing experiments on argillites. Paper ISRM-13CONGRESS-2015-034 presented at the13th ISRM International Congress of Rock Mechanics, May 10–13, 2015, Montreal, Canada.
    [Google Scholar]
  6. Bandis, S.C.1980. Experimental Studies of Scale Effects on Shear Strength and Deformation of Rock Joints. PhD thesis, University of Leeds, Leeds, UK.
    [Google Scholar]
  7. Barnes, G.2000. Soil Mechanics: Principles and Practice. 2nd edn. Palgrave MacMillan, Basingstoke, UK.
    [Google Scholar]
  8. Barron, A.J.M., Lott, G.K. and Riding, J.B.2012. Stratigraphical Framework for the Middle Jurassic Strata of Great Britain and the Adjoining Continental Shelf. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  9. Barton, N.1976. The shear strength of rock and rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13, 255–279, doi: 10.1016/0148-9062(76)90003-610.1016/0148‑9062(76)90003‑6
    https://doi.org/10.1016/0148-9062(76)90003-6 [Google Scholar]
  10. Barton, N.2007. Thermal over-closure of joints and rock masses and implications for HLW Repositories. In: Ribeiro e Sousa, L., Olalla, C. and Grossmann, N. (eds) 11th Congress of the International Society for Rock Mechanics: The Second Half Century of Rock Mechanics. CRC Press, London, 109–116.
    [Google Scholar]
  11. Barton, N.2013. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering, 5, 249–261, doi: 10.1016/j.jrmge.2013.05.00810.1016/j.jrmge.2013.05.008
    https://doi.org/10.1016/j.jrmge.2013.05.008 [Google Scholar]
  12. Barton, N.2020. A review of mechanical over-closure and thermal over-closure of rock joints: Potential consequences for coupled modelling of nuclear waste disposal and geothermal energy development. Tunnelling and Underground Space Technology, 99, doi: 10.1016/j.tust.2020.10337910.1016/j.tust.2020.103379
    https://doi.org/10.1016/j.tust.2020.103379 [Google Scholar]
  13. Barton, N. and Bandis, S.C.1982. Effects of block size on the shear behaviour of jointed rock. In: Goodman, R.E. and Heuze, F.E. (eds) Issues in Rock Mechanics: Proceedings of the Twenty-third Symposium on Rock Mechanics, the University of California, Berkeley, California, August 25–27, 1982, Volume 23. American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), San Ramon, CA, 739–760.
    [Google Scholar]
  14. Barton, N. and Choubey, V.1977. The shear strength of rock joints in theory and practice. Rock Mechanics, 10, 1–54, doi: 10.1007/BF0126180110.1007/BF01261801
    https://doi.org/10.1007/BF01261801 [Google Scholar]
  15. Barton, N., Wang, C. and Yong, R.2023. Advances in joint roughness coefficient (JRC) and its engineering applications. Journal of Rock Mechanics and Geotechnical Engineering, 15, 3352–3379, doi: 10.1016/j.jrmge.2023.02.00210.1016/j.jrmge.2023.02.002
    https://doi.org/10.1016/j.jrmge.2023.02.002 [Google Scholar]
  16. Battey, M.H.1986. Mineralogy for Students. 2nd edn. Longman Scientific & Technical, Harlow, UK.
    [Google Scholar]
  17. BEIS2018. Implementing Geological Disposal – Working with Communities: Updated Framework for the Long Term Management of Higher Activity Radioactive Waste. Technical Report. Department for Business, Energy, and Industrial Strategy (BEIS), London, https://assets.publishing.service.gov.uk/media/65a7e79fb2f3c60013e5d451/implementing-geological-disposal-working-with-communities.pdf
    [Google Scholar]
  18. Bernier, F., Li, X.L. and Bastiaens, W.2011. Twenty-five years’ geotechnical observation and testing in the Tertiary Boom Clay format. In: May, R. (ed.) Stiff Sedimentary Clays: Genesis and Engineering Behaviour. Géotechnique Symposium in Print 2007. ICE Publishing, London, 223–231.
    [Google Scholar]
  19. BGE2024. Search for a final repository. Bundesgesellschaft für Endlagerung (BGE), Peine, Germany, https://www.bge.de/de/endlagersuche/
  20. BGS1990. Grimsby (including Sheet 91 Saltfleet) Solid and Drift. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  21. BGS2024. The BGS Lexicon of Named Rock Units – Ancholme Group. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  22. Birkholzer, J.T. and Bond, A.E.2022. DECOVALEX-2019: an international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. International Journal of Rock Mechanics and Mining Sciences, 154, doi: 10.1016/j.ijrmms.2022.10509710.1016/j.ijrmms.2022.105097
    https://doi.org/10.1016/j.ijrmms.2022.105097 [Google Scholar]
  23. Bossart, P.2021. 25 Years Mont Terri Rock Laboratory. Technical Report. Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (Nagra), Wettingen, Switzerland.
    [Google Scholar]
  24. Bossart, P., Bernier, F. et al.2017. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences, 110, 3–22, doi: 10.1007/s00015-016-0236-110.1007/s00015‑016‑0236‑1
    https://doi.org/10.1007/s00015-016-0236-1 [Google Scholar]
  25. Bossart, P., Nussbaum, C. and Schuster, K.2019. Generation and self-sealing of the excavation-damaged zone (EDZ) around a subsurface excavation in a claystone. American Geophysical Union Geophysical Monograph Series, 245, 125–143, doi: 10.1002/9781119066699.ch810.1002/9781119066699.ch8
    https://doi.org/10.1002/9781119066699.ch8 [Google Scholar]
  26. Bourg, I.C.2015. Sealing shales versus brittle shales: A sharp threshold in the material properties and energy technology uses of fine-grained sedimentary rocks. Environmental Science & Technology Letters, 2, 255–259, doi: 10.1021/acs.estlett.5b0023310.1021/acs.estlett.5b00233
    https://doi.org/10.1021/acs.estlett.5b00233 [Google Scholar]
  27. BSI2018. BS EN ISO 14689:2018 – Geotechnical Investigation and Testing – Identification, Description and Classification of Rock (ISO 14689:2017). British Standards Institution (BSI), London.
    [Google Scholar]
  28. BSI2020. BS 5930:2015 +A1:2020 – Code of Practice for Site Investigations. British Standards Institution (BSI), London.
    [Google Scholar]
  29. Butscher, C., Mutschler, T. and Blum, P.2016. Swelling of clay-sulfate rocks: a review of processes and controls. Rock Mechanics and Rock Engineering, 49, 1533–1549, doi: 10.1007/s00603-015-0827-610.1007/s00603‑015‑0827‑6
    https://doi.org/10.1007/s00603-015-0827-6 [Google Scholar]
  30. Byerlee, J.1978. Friction of rocks. Pure and Applied Geophysics, 116, 615–626, doi: 10.1007/BF0087652810.1007/BF00876528
    https://doi.org/10.1007/BF00876528 [Google Scholar]
  31. Chui, H.K. and Johnston, I.W.1984. The application of critical state concepts to Melbourne Mudstone. In: Fourth Australia–New Zealand Conference on Geomechanics, Perth, 14–18 May 1984. Institution of Engineers, Australia, Barton, ACT, Australia, 29–33.
    [Google Scholar]
  32. Cohen, K., Finney, S., Gibbard, P. and Fan, J.X.2013. The ICS international chronostratigraphic chart. Episodes, 36, 199–204, doi: 10.18814/epiiugs/2013/v36i3/00210.18814/epiiugs/2013/v36i3/002
    https://doi.org/10.18814/epiiugs/2013/v36i3/002 [Google Scholar]
  33. Cripps, J.C. and Czerewko, M.A.2017. The influence of diagenetic and mineralogical factors on the breakdown and geotechnical properties of mudrocks. Geological Society, London, Special Publications, 454, 271–293, doi: 10.1144/SP454.1010.1144/SP454.10
    https://doi.org/10.1144/SP454.10 [Google Scholar]
  34. Cripps, J.C. and Taylor, R.K.1981. The engineering properties of mudrocks. Quarterly Journal of Engineering Geology, 14, 325–346, doi: 10.1144/GSL.QJEG.1981.014.04.1010.1144/GSL.QJEG.1981.014.04.10
    https://doi.org/10.1144/GSL.QJEG.1981.014.04.10 [Google Scholar]
  35. Cuss, R.J. and Harrington, J.F.2010. Effect of Stress Field and Mechanical Deformation on Permeability and Fracture Self-Sealing. Progress Report on the Stress Path Permeameter Experiment conducted on Callovo-Oxfordian Claystone. BGS Technical ReportCR/10/151N. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  36. Cuss, R.J., Harrington, J.F. and Noy, D.J.2012. Final Report of FORGE WP4.1.1: The Stress-Path Permeameter Experiment Conducted on Callovo-Oxfordian Claystone. BGS Technical ReportCR/12/140N. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  37. Davy, C.A., Skoczylas, F., Barnichon, J.D. and Lebon, P.2007. Permeability of macro-cracked argillite under confinement: gas and water testing. Physics and Chemistry of the Earth, Parts A/B/C, 32, 667–680, doi: 10.1016/j.pce.2006.02.05510.1016/j.pce.2006.02.055
    https://doi.org/10.1016/j.pce.2006.02.055 [Google Scholar]
  38. de Carvalho Balaban, R., Vidal, E.L.F. and Borges, M.R.2015. Design of experiments to evaluate clay swelling inhibition by different combinations of organic compounds and inorganic salts for application in water base drilling fluids. Applied Clay Science, 105–106, 124–130, doi: 10.1016/j.clay.2014.12.02910.1016/j.clay.2014.12.029
    https://doi.org/10.1016/j.clay.2014.12.029 [Google Scholar]
  39. de Haller, A., Mazurek, M., Spangenberg, J. and Mori, A.2014. SF (Self Sealing of Faults and Paleo-Fluid Flow): Synthesis Report. Mont Terri Technical ReportTR 08-02. Federal Office of Topography (swisstopo), Wabern, Switzerland.
    [Google Scholar]
  40. De La Vaissière, R., Morel, J. et al.2014. Excavation-induced fractures network surrounding tunnel: properties and evolution under loading. Geological Society, London, Special Publications, 400, 279–291, doi: 10.1144/SP400.3010.1144/SP400.30
    https://doi.org/10.1144/SP400.30 [Google Scholar]
  41. De La Vaissière, R., Armand, G. and Talandier, J.2015. Gas and water flow in an excavation-induced fracture network around an underground drift: a case study for a radioactive waste repository in clay rock. Journal of Hydrology, 521, 141–156, doi: 10.1016/j.jhydrol.2014.11.06710.1016/j.jhydrol.2014.11.067
    https://doi.org/10.1016/j.jhydrol.2014.11.067 [Google Scholar]
  42. Delay, J.2019. Synthesis of 20 Years Research, Development and Demonstration in Andra's Underground Research Laboratory in Bure for Cigéo Project-France. Andra Technical Document. Agence nationale pour la gestion des déchets radioactifs (Andra), Paris.
    [Google Scholar]
  43. Delay, J., Bossart, P. et al.2014. Three decades of underground research laboratories: what have we learned?Geological Society, London, Special Publications, 400, 7–32, doi: 10.1144/SP400.110.1144/SP400.1
    https://doi.org/10.1144/SP400.1 [Google Scholar]
  44. Di Donna, A., Charrier, P., Salager, S. and Besuelle, P.2019. Self-sealing capacity of argillite samples. E3S Web of Conferences, 92, 03005, doi: 10.1051/e3sconf/2019920300510.1051/e3sconf/20199203005
    https://doi.org/10.1051/e3sconf/20199203005 [Google Scholar]
  45. Fabre, G. and Pellet, F.2006. Creep and time-dependent damage in argillaceous rocks. International Journal of Rock Mechanics and Mining Sciences, 43, 950–960, doi: 10.1016/j.ijrmms.2006.02.00410.1016/j.ijrmms.2006.02.004
    https://doi.org/10.1016/j.ijrmms.2006.02.004 [Google Scholar]
  46. Ficker, T. and Martišek, D.2016. Alternative method for assessing the roughness coefficients of rock joints. Journal of Computing in Civil Engineering, 30, 4015059, doi: 10.1061/(ASCE)CP.1943-5487.000054010.1061/(ASCE)CP.1943‑5487.0000540
    https://doi.org/10.1061/(ASCE)CP.1943-5487.0000540 [Google Scholar]
  47. Fisher, Q., Kets, F. and Crook, A.2013. Self-Sealing of Faults and Fractures in Argillaceous Formations: Evidence from the Petroleum Industry. Nagra ArbeitsberichtNAB 13-06. Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (Nagra), Wettingen, Switzerland.
    [Google Scholar]
  48. Fisher, Q., Lecampion, B., Soliva, R., Mosar, J., Lanyon, B. and Kaminskaite, I.2021. Generation and Maintenance of Preferred Fluid Pathways in Shales: Experience from the Petroleum Industry. Technical Report. Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (Nagra), Wettingen, Switzerland.
    [Google Scholar]
  49. Fisher, Q., Kaminskaite, I. and del Pino Sanchez, A.2023. Shale barrier performance in petroleum systems: implications for CO2 storage and nuclear waste disposal. Geoenergy, 1, doi: 10.1144/geoenergy2023-00610.1144/geoenergy2023‑006
    https://doi.org/10.1144/geoenergy2023-006 [Google Scholar]
  50. Franklin, J.A.1985. Suggested method for determining point load strength. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 51–60, doi: 10.1016/0148-9062(85)92327-710.1016/0148‑9062(85)92327‑7
    https://doi.org/10.1016/0148-9062(85)92327-7 [Google Scholar]
  51. Franklin, J.A., Vogler, U.W., Szlavin, J., Edmund, J.M. and Bieniawski, Z.T.1979. Suggested methods for determining water content, porosity, absorption and related properties and swelling and slake-durability index properties: Part 2: Suggested methods for determining swelling and slake durability index properties. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 151–156, doi: 10.1016/0148-9062(79)91453-010.1016/0148‑9062(79)91453‑0
    https://doi.org/10.1016/0148-9062(79)91453-0 [Google Scholar]
  52. Geng, W., Han, W., Yin, J. and Lu, Z.2022. Salinity effects on the strength and morphological indices of soft marine clay. Scientific Reports, 12, 17563, doi: 10.1038/s41598-022-22627-w10.1038/s41598‑022‑22627‑w
    https://doi.org/10.1038/s41598-022-22627-w [Google Scholar]
  53. Gens, A., Vaunat, J., Garitte, B. and Wileveau, Y.2011. In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. In: May, R. (ed.) Stiff Sedimentary Clays: Genesis and Engineering Behaviour. Géotechnique Symposium in Print 2007. ICE Publishing, London, 123–144.
    [Google Scholar]
  54. Giot, R., Auvray, C. and Talandier, J.2019. Self-sealing of claystone under X-ray nanotomography. Geological Society, London, Special Publications, 482, 213–223, doi: 10.1144/SP482.410.1144/SP482.4
    https://doi.org/10.1144/SP482.4 [Google Scholar]
  55. Grant, R.J., Underhill, J.R., Hernández-Casado, J., Jamieson, R.J. and Williams, R.M.2021. The evolution of the Dowsing Graben System: implications for petroleum prospectivity in the UK Southern North Sea. Petroleum Geoscience, 27, doi: 10.1144/petgeo2018-06410.1144/petgeo2018‑064
    https://doi.org/10.1144/petgeo2018-064 [Google Scholar]
  56. Green, P.F., Duddy, I.R. and Japsen, P.2018. Multiple episodes of regional exhumation and inversion identified in the UK Southern North Sea based on integration of palaeothermal and palaeoburial indicators. Geological Society, London, Petroleum Geology Conference Series, 8, 47–65, doi: 10.1144/PGC8.2110.1144/PGC8.21
    https://doi.org/10.1144/PGC8.21 [Google Scholar]
  57. Haggert, K., Cox, S.J.D. and Jessell, M.W.1992. Observation of fault gouge development in laboratory see-through experiments. Tectonophysics, 204, 123–136, doi: 10.1016/0040-1951(92)90274-A10.1016/0040‑1951(92)90274‑A
    https://doi.org/10.1016/0040-1951(92)90274-A [Google Scholar]
  58. Hakami, E. and Winell, S.2022. Point Load Testing of Intact Rock and of Samples with Sealed Fractures. Technical Report. Geosigma AB for SKB, Göteborg, Sweden.
    [Google Scholar]
  59. Hallsworth, C. and Cox, R.1999. BGS Rock Classification Scheme. Volume 3. Classification of Sediments and Sedimentary Rocks. BGS Research Report RR 99-03. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  60. Harrington, J.F., Cuss, R.J. and Talandier, J.2017. Gas transport properties through intact and fractured Callovo-Oxfordian mudstones. Geological Society, London, Special Publications, 454, 131–154, doi: 10.1144/SP454.710.1144/SP454.7
    https://doi.org/10.1144/SP454.7 [Google Scholar]
  61. Hencher, S.R.2014. Characterizing discontinuities in naturally fractured outcrop analogues and rock core: the need to consider fracture development over geological time. Geological Society, London, Special Publications, 374, 113–123, doi: 10.1144/SP374.1510.1144/SP374.15
    https://doi.org/10.1144/SP374.15 [Google Scholar]
  62. Hencher, S.R. and Richards, L.R.2015. Assessing the shear strength of rock discontinuities at laboratory and field scales. Rock Mechanics and Rock Engineering, 48, 883–905, doi: 10.1007/s00603-014-0633-610.1007/s00603‑014‑0633‑6
    https://doi.org/10.1007/s00603-014-0633-6 [Google Scholar]
  63. Hensen, E.J.M. and Smit, B.2002. Why clays swell. The Journal of Physical Chemistry B, 106, 12 664–12 667, doi: 10.1021/jp026488310.1021/jp0264883
    https://doi.org/10.1021/jp0264883 [Google Scholar]
  64. Herrmann, J., Rybacki, E., Sone, H. and Dresen, G.2020. Deformation experiments on Bowland and Posidonia shale – Part II: Creep behavior at in situ pc–T conditions. Rock Mechanics and Rock Engineering, 53, 755–779, doi: 10.1007/s00603-019-01941-210.1007/s00603‑019‑01941‑2
    https://doi.org/10.1007/s00603-019-01941-2 [Google Scholar]
  65. Hillier, S.2000. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals, 35, 291–302, doi: 10.1180/00098550054666610.1180/000985500546666
    https://doi.org/10.1180/000985500546666 [Google Scholar]
  66. Hiscock, K.2005. Hydrogeology: Principles and Practice. Blackwell Science, Malden, MA.
    [Google Scholar]
  67. Hobbs, P., Hallam, J.R. et al.2002. Engineering Geology of British Rocks and Soils: Mudstones of the Mercia Mudstone Group. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  68. Holford, S.P., Turner, J.P., Green, P.F. and Hillis, R.R.2009. Signature of cryptic sedimentary basin inversion revealed by shale compaction data in the Irish Sea, western British Isles. Tectonics, 28, doi: 10.1029/2008TC00235910.1029/2008TC002359
    https://doi.org/10.1029/2008TC002359 [Google Scholar]
  69. Holland, M., Urai, J.L., van der Zee, W., Stanjek, H. and Konstanty, J.2006. Fault gouge evolution in highly overconsolidated claystones. Journal of Structural Geology, 28, 323–332, doi: 10.1016/j.jsg.2005.10.00510.1016/j.jsg.2005.10.005
    https://doi.org/10.1016/j.jsg.2005.10.005 [Google Scholar]
  70. Horseman, S.2001. Self-Healing of Fractures in Argillaceous Media from the Geomechanical Point of View. Technical Report. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  71. Horseman, S., Cuss, R., Reeves, H. and Noy, D.2005. Potential for Self-Healing of Fractures in Plastic Clays and Argillaceous Rocks Under Repository Conditions. BGS Technical Report. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  72. Horseman, S.T., McCann, D.M., McEwen, T.J. and Brightman, M.A.1984. Determination of the Geotechnical Properties of Mudrocks from Geophysical Logging of the Harwell Boreholes. BGS Technical Report. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  73. Howard, A.S., Warrington, G., Ambrose, K. and Rees, J.G.2008. A Formational Framework for the Mercia Mudstone Group (Triassic) of England and Wales. BGS Research ReportRR/08/04. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  74. Hudson, J. and Harrison, J.2000. Engineering Rock Mechanics: An Introduction to the Principles. 2nd edn. Elsevier Science, London.
    [Google Scholar]
  75. Hudson, J.D. and Martill, D.M.1994. The Peterborough Member (Callovian, Middle Jurassic) of the Oxford Clay Formation at Peterborough, UK. Journal of the Geological Society, London, 151, 113–124, doi: 10.1144/gsjgs.151.1.011310.1144/gsjgs.151.1.0113
    https://doi.org/10.1144/gsjgs.151.1.0113 [Google Scholar]
  76. Ingram, R.1953. Fissility of mudrocks. Geological Society of America Bulletin, 64, 869–878, doi: 10.1130/0016-7606(1953)64[869:FOM]2.0.CO;210.1130/0016‑7606(1953)64[869:FOM]2.0.CO;2
    https://doi.org/10.1130/0016-7606(1953)64[869:FOM]2.0.CO;2 [Google Scholar]
  77. Innocente, J.C., Paraskevopoulou, C. and Diederichs, M.S.2021. Estimating the long-term strength and time-to-failure of brittle rocks from laboratory testing. International Journal of Rock Mechanics and Mining Sciences, 147, doi: 10.1016/j.ijrmms.2021.10490010.1016/j.ijrmms.2021.104900
    https://doi.org/10.1016/j.ijrmms.2021.104900 [Google Scholar]
  78. Ishii, E.2021. The highest potential transmissivities of fractures in fault zones: reference values based on laboratory and in situ hydro-mechanical experimental data. Engineering Geology, 294, doi: 10.1016/j.enggeo.2021.10636910.1016/j.enggeo.2021.106369
    https://doi.org/10.1016/j.enggeo.2021.106369 [Google Scholar]
  79. ISRM1978. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 15, 319–368, doi: 10.1016/0148-9062(78)91472-910.1016/0148‑9062(78)91472‑9
    https://doi.org/10.1016/0148-9062(78)91472-9 [Google Scholar]
  80. ISRM1979. Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties: Part 1: Suggested methods for determining water content, porosity, density, absorption and related properties. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 16, 143–151, doi: 10.1016/0148-9062(79)91452-910.1016/0148‑9062(79)91452‑9
    https://doi.org/10.1016/0148-9062(79)91452-9 [Google Scholar]
  81. Iverson, N.R.1991. Potential effects of subglacial water-pressure fluctuations on quarrying. Journal of Glaciology, 37, 27–36, doi: 10.3189/S002214300004276310.3189/S0022143000042763
    https://doi.org/10.3189/S0022143000042763 [Google Scholar]
  82. Jackson, D.I. and Mulholland, P.1993. Tectonic and stratigraphic aspects of the East Irish Sea Basin and adjacent areas: contrasts in their post-Carboniferous structural styles. Geological Society, London, Petroleum Geology Conference Series, 4, 791–808, doi: 10.1144/004079110.1144/0040791
    https://doi.org/10.1144/0040791 [Google Scholar]
  83. Jeans, C.V. and Merriman, R.J.2006. Clay minerals in onshore and offshore strata of the British Isles: origins and clay mineral stratigraphy. Clay Minerals, 41, 1–3, doi: 10.1180/000985506411019410.1180/0009855064110194
    https://doi.org/10.1180/0009855064110194 [Google Scholar]
  84. Knipe, R.J., Fisher, Q.J. et al.1997. Fault seal analysis: successful methodologies, application and future directions. Norwegian Petroleum Society Special Publications, 7, 15–38, doi: 10.1016/S0928-8937(97)80004-510.1016/S0928‑8937(97)80004‑5
    https://doi.org/10.1016/S0928-8937(97)80004-5 [Google Scholar]
  85. Kumari, N. and Mohan, C.2021. Basics of clay minerals and their characteristic properties. In: Do Nascimento, G.M. (ed.) Clay and Clay Minerals. IntechOpen, London, doi: 10.5772/intechopen.9767210.5772/intechopen.97672
    https://doi.org/10.5772/intechopen.97672 [Google Scholar]
  86. Labiouse, V., Escoffier, S., Gastaldo, L. and Mathier, J.F.2009. Self-sealing of localised cracks in Boom and Opalinus Clay hollow cylinders. In:Impact of Thermo-Hydro-Mechanical-Chemical (THMC) Processes on the Safety of Underground Radioactive Waste Repositories. Proceedings of European Commission TIMODAZ-THERESA International Conference, Luxembourg. European Commission, Brussels, 379–383.
    [Google Scholar]
  87. Lanyon, G.W., Marschall, P., Trick, T., De La Vaissiere, R., Shao, H. and Leung, H.2014. Self-sealing experiments and gas injection tests in a backfilled microtunnel of the Mont Terri URL. Geological Society, London, Special Publications, 400, 93–106, doi: 10.1144/SP400.810.1144/SP400.8
    https://doi.org/10.1144/SP400.8 [Google Scholar]
  88. Lei, X.2003. How do asperities fracture? An experimental study of unbroken asperities. Earth and Planetary Science Letters, 213, 347–359, doi: 10.1016/S0012-821X(03)00328-510.1016/S0012‑821X(03)00328‑5
    https://doi.org/10.1016/S0012-821X(03)00328-5 [Google Scholar]
  89. Liu, C.D., Cheng, Y., Jiao, Y.Y., Zhang, G.H., Zhang, W.S., Ou, G.Z. and Tan, F.2021. Experimental study on the effect of water on mechanical properties of swelling mudstone. Engineering Geology, 295, doi: 10.1016/j.enggeo.2021.10644810.1016/j.enggeo.2021.106448
    https://doi.org/10.1016/j.enggeo.2021.106448 [Google Scholar]
  90. Lu, Y., Wang, L., Sun, X. and Wang, J.2017. Experimental study of the influence of water and temperature on the mechanical behavior of mudstone and sandstone. Bulletin of Engineering Geology and the Environment, 76, 645–660, doi: 10.1007/s10064-016-0851-010.1007/s10064‑016‑0851‑0
    https://doi.org/10.1007/s10064-016-0851-0 [Google Scholar]
  91. Meschede, M. and Warr, L.N.2019. The Geology of Germany: A Process-Oriented Approach. Regional Geology Reviews. Springer Nature, Cham, Switzerland.
    [Google Scholar]
  92. Millard, A., Mokni, N. et al.2017. Comparative modelling approaches of hydro-mechanical processes in sealing experiments at the Tournemire URL. Environmental Earth Sciences, 76, 78, doi: 10.1007/s12665-016-6324-810.1007/s12665‑016‑6324‑8
    https://doi.org/10.1007/s12665-016-6324-8 [Google Scholar]
  93. Moore, R.1991. The chemical and mineralogical controls upon the residual strength of pure and natural clays. Géotechnique, 41, 35–47, doi: 10.1680/geot.1991.41.1.3510.1680/geot.1991.41.1.35
    https://doi.org/10.1680/geot.1991.41.1.35 [Google Scholar]
  94. Moriwaki, Y.1975. Causes of Slaking in Argillaceous Materials. PhD dissertation, University of California at Berkeley, Berkeley, California, USA.
    [Google Scholar]
  95. Murray, H.2007. Applied Clay Mineralogy. Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Elsevier, Amsterdam.
    [Google Scholar]
  96. Nagra2020. Clay Rocks and their Contribution to Radioactive Waste Disposal. Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (Nagra), Wettingen, Switzerland.
    [Google Scholar]
  97. NEA2010. Self-Sealing of Fractures in Argillaceous Formations in the Context of Geological Disposal of Radioactive Waste. Review and Synthesis. Nuclear Energy Agency (NEA) Technical Report. OECD Publishing, Paris.
    [Google Scholar]
  98. Norbury, D.2016. Soil and Rock Description in Engineering Practice. Whittles Publishing, Dunbeath, Caithness, UK.
    [Google Scholar]
  99. Norris, S.2017. Radioactive waste confinement: clays in natural and engineered barriers – introduction. Geological Society, London, Special Publications, 443, 1–8, doi: 10.1144/SP443.2610.1144/SP443.26
    https://doi.org/10.1144/SP443.26 [Google Scholar]
  100. Norris, S.2019. Multiple roles of clays in radioactive waste confinement – introduction. Geological Society, London, Special Publications, 482, 1–9, doi: 10.1144/SP482-2019-410.1144/SP482‑2019‑4
    https://doi.org/10.1144/SP482-2019-4 [Google Scholar]
  101. Norry, M.J., Dunham, A.C. and Hudson, J.D.1994. Mineralogy and geochemistry of the Peterborough Member, Oxford Clay Formation, Jurassic, UK: element fractionation during mudrock sedimentation. Journal of the Geological Society, London, 151, 195–207, doi: 10.1144/gsjgs.151.1.019510.1144/gsjgs.151.1.0195
    https://doi.org/10.1144/gsjgs.151.1.0195 [Google Scholar]
  102. Nuclear Waste Services2018. Why Underground? Managing Radioactive Waste with Geological Disposal. Nuclear Waste Services, Calderbridge, Cumbria, UK, https://www.gov.uk/guidance/why-underground
    [Google Scholar]
  103. Nuclear Waste Services2022. GDF (Geological Disposal Facility. A Permanent Solution for the UK's Higher-Activity Radioactive Waste. Nuclear Waste Services, Calderbridge, Cumbria, UK, https://www.gov.uk/guidance/gdf-geological-disposal-facility
    [Google Scholar]
  104. Ohazuruike, L. and Lee, K.J.2023. A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems. Nuclear Engineering and Technology, 55, 1495–1506, doi: 10.1016/j.net.2023.01.00710.1016/j.net.2023.01.007
    https://doi.org/10.1016/j.net.2023.01.007 [Google Scholar]
  105. Palmström, A. and Stille, H.2015. Rock Engineering. 2nd edn. ICE Publishing, London, doi: 10.1680/re.5995510.1680/re.59955
    https://doi.org/10.1680/re.59955 [Google Scholar]
  106. Paraskevopoulou, C.2016. Time-Dependency of Rocks and Implications Associated with Tunnelling. PhD thesis, Queen's University, Kingston, Ontario, Canada.
    [Google Scholar]
  107. Parsons, S.2020. Thermo-Hydro-Mechanical Simulation of a Generic Geological Disposal Facility for Radioactive Waste. PhD thesis, University of Leeds, Leeds, UK.
    [Google Scholar]
  108. Patton, F.D.1966. Multiple modes of shear failure in rock. Paper presented at the First International Society for Rock Mechanics (ISRM) Congress, Lisbon, Portugal.
    [Google Scholar]
  109. Pereira, J.P. and De Freitas, M.H.1993. Mechanisms of shear failure in artificial fractures of sandstone and their implication for models of hydromechanical coupling. Rock Mechanics and Rock Engineering, 26, 195–214, doi: 10.1007/BF0104011510.1007/BF01040115
    https://doi.org/10.1007/BF01040115 [Google Scholar]
  110. Pirzada, M.A., Bahaaddini, M., Andersen, M.S. and Roshan, H.2023. Coupled hydro-mechanical behaviour of rock joints during normal and shear loading. Rock Mechanics and Rock Engineering, 56, 1219–1237, doi: 10.1007/s00603-022-03106-010.1007/s00603‑022‑03106‑0
    https://doi.org/10.1007/s00603-022-03106-0 [Google Scholar]
  111. Radioactive Waste Management2016. National Geological Screening Guidance: Implementing Geological Disposal: Providing Information on Geology. Technical Report. Radioactive Waste Management, Harwell, UK, https://assets.publishing.service.gov.uk/media/5a7f5c62e5274a2e87db5636/A-public-consultation-National-Geological-Screening-Guidance.pdf
    [Google Scholar]
  112. Reeves, G., Simms, I. and Cripps, J. (eds) 2006. Clay Materials Used in Construction. Geological Society, London.
    [Google Scholar]
  113. Rullière, A., Rivard, P., Peyras, L. and Breul, P.2020. Influence of roughness on the apparent cohesion of rock joints at low normal stresses. Journal of Geotechnical and Geoenvironmental Engineering, 146, 4020003, doi: 10.1061/(ASCE)GT.1943-5606.000220010.1061/(ASCE)GT.1943‑5606.0002200
    https://doi.org/10.1061/(ASCE)GT.1943-5606.0002200 [Google Scholar]
  114. Savage, D.2005. The Effects of High Salinity Groundwater on the Performance of Clay Barriers. Technical Report2005-54. Swedish Nuclear Power Inspectorate (SKI), Stockholm.
    [Google Scholar]
  115. Schafmeister, M.T.2023. High-level radioactive waste repository: how geology combined with societal principles can lead to public acceptance – the German experiment. Comptes Rendus Géoscience, 355, 347–361, doi: 10.5802/crgeos.17810.5802/crgeos.178
    https://doi.org/10.5802/crgeos.178 [Google Scholar]
  116. Schofield, D., Lewis, M., Smedley, P., Bloomfield, J.P. and Boon, D.2014. Illustrative Components of the Geological Environment. BGS Commissioned ReportCR/14/132N.British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  117. Seidel, D., Schmidt, W.A., Fischer, T., Leonhard, J. and Engelhardt, H.J.2024. Borehole Sealing Strategies for Exploration Drillings in Mercia Mudstone Group (MMG). BGE Technical ReportTEC 2024-02. Bundesgesellschaft für Endlagerung (BGE), Peine, Germany.
    [Google Scholar]
  118. Smedley, P., Bearcock, J., Newell, A., Stewart, M., Metcalf, R., Zagorscak, R. and Bailey, M.2022. Guide to Reference Groundwater and Porewater Compositions in Support of the UK GDF Programme. Technical ReportNWS-CR-23-007. Prepared by British Geological Survey under contract to Radioactive Waste Management (RWM). Nuclear Waste Services, Calderbridge, UK.
    [Google Scholar]
  119. Sone, H. and Zoback, M.D.2013. Mechanical properties of shale-gas reservoir rocks – Part 2: Ductile creep, brittle strength, and their relation to the elastic modulus. Geophysics, 78, D393–D402, doi: 10.1190/geo2013-0051.110.1190/geo2013‑0051.1
    https://doi.org/10.1190/geo2013-0051.1 [Google Scholar]
  120. Tsang, C.F. and Bernier, F.2005. Definitions of excavation disturbed zone and excavation damage zone. In: Davies, C. and Bernier, F. (eds) Impact of the Excavation Disturbed or Damaged Zone (EDZ) on the Performance of Radioactive Waste Geological Repositories. Office for Official Publications of the European Communities, Luxembourg, 5–8.
    [Google Scholar]
  121. Turner, J.P., Berry, T.W., Bowman, M.J. and Chapman, N.A.2023. Role of the geosphere in deep nuclear waste disposal – an England and Wales perspective. Earth-Science Reviews, 242, doi: 10.1016/j.earscirev.2023.10444510.1016/j.earscirev.2023.104445
    https://doi.org/10.1016/j.earscirev.2023.104445 [Google Scholar]
  122. Ulusay, R. (ed.) 2007. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. Springer, Cham, Switzerland.
    [Google Scholar]
  123. Valès, F., Minh, D.N., Gharbi, H. and Rejeb, A.2004. Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Applied Clay Science, 26, 197–207, doi: 10.1016/j.clay.2003.12.03210.1016/j.clay.2003.12.032
    https://doi.org/10.1016/j.clay.2003.12.032 [Google Scholar]
  124. Wang, C., Briffaut, M., Talandier, J. and Skoczylas, F.2024. Self-sealing of pre-cracked Callovo-Oxfordian claystone: Implications for geological disposal of nuclear waste. International Journal of Rock Mechanics and Mining Sciences, 175, doi: 10.1016/j.ijrmms.2024.10567810.1016/j.ijrmms.2024.105678
    https://doi.org/10.1016/j.ijrmms.2024.105678 [Google Scholar]
  125. Wignall, P.B.1989. Sedimentary dynamics of the Kimmeridge Clay: tempests and earthquakes. Journal of the Geological Society, London, 146, 273–284, doi: 10.1144/gsjgs.146.2.027310.1144/gsjgs.146.2.0273
    https://doi.org/10.1144/gsjgs.146.2.0273 [Google Scholar]
  126. Woodman, J.2020. Thermo-Mechanical Loading of Intact Rock and Discontinuities. PhD thesis, University of Leeds, Leeds, UK.
    [Google Scholar]
  127. Woods, M.A., Newell, A.J. and Burrel, L.2022. UK Stratigraphical Framework Series: The Ancholme Group of the East Midlands Shelf. Technical ReportOR/22/013. British Geological Survey (BGS), Keyworth, Nottingham, UK.
    [Google Scholar]
  128. Woods, M.A., Hennissen, J.A.I., Newell, A.J., Duff, K.L. and Wilby, P.R.2023. Rolling back the ‘mudstone blanket’: complex geometric and facies responses to basin architecture in the epicontinental Oxford Clay Formation (Jurassic, UK). Newsletters on Stratigraphy, 56, 1–31, doi: 10.1127/nos/2022/068510.1127/nos/2022/0685
    https://doi.org/10.1127/nos/2022/0685 [Google Scholar]
  129. Wyllie, D.C. and Mah, C.2004. Rock Slope Engineering. CRC Press, Boca Raton, FL.
    [Google Scholar]
  130. Yang, Z.Y., Taghichian, A. and Li, W.C.2010. Effect of asperity order on the shear response of three-dimensional joints by focusing on damage area. International Journal of Rock Mechanics and Mining Sciences, 47, 1012–1026, doi: 10.1016/j.ijrmms.2010.05.00810.1016/j.ijrmms.2010.05.008
    https://doi.org/10.1016/j.ijrmms.2010.05.008 [Google Scholar]
  131. Zhang, C.L. and Talandier, J.2023. Self-sealing of fractures in indurated claystones measured by water and gas flow. Journal of Rock Mechanics and Geotechnical Engineering, 15, 227–238, doi: 10.1016/J.JRMGE.2022.01.01410.1016/J.JRMGE.2022.01.014
    https://doi.org/10.1016/J.JRMGE.2022.01.014 [Google Scholar]
  132. Zhang, Y. and Chai, J.2020. Effect of surface morphology on fluid flow in rough fractures: A review. Journal of Natural Gas Science and Engineering, 79, doi: 10.1016/j.jngse.2020.10334310.1016/j.jngse.2020.103343
    https://doi.org/10.1016/j.jngse.2020.103343 [Google Scholar]
  133. Ziegler, M., Williams, M. and Loew, S.2022. SE-P Experiment: Summary and Conclusions. Technical ReportTN 2022-51. ETH Zurich, Zurich, Switzerland.
    [Google Scholar]
  134. Zimmerman, R.W.2012. The history and role of the cubic law for fluid flow in fractured rocks. Abstract H13H-04 presented at theAGU Fall Meeting, December 3–7, 2012, San Francisco, California, UK.
    [Google Scholar]
/content/journals/10.1144/geoenergy2024-021
Loading
/content/journals/10.1144/geoenergy2024-021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error