Volume 22, Issue 4

Abstract

The Messinian sea-level fall in the western Black Sea is poorly understood and often debated. We provide evidence for the sea-level fall, offshore Romania. There, the Messinian sedimentation is closely related to the gravitational collapse of the basin margin above the Maykop shales. This thin-skinned system controlled the Messinian lowstand depocentres. We estimated about 500–600 m of sea-level drop based on the erosional valleys cut into the formed lower Pontian slope and the Messinian erosional surface (MES).

The Messinian lowstand sediments are delimited by the basal erosional surface (BES) formed at the onset of the sea-level fall and by the MES related to transgressive wave erosion during the initial slow rise in sea level. Subsequent rapid sea-level rise drowned the remaining erosional topography on the lower Pontian palaeo-shelf. Similar features have been described in the Mediterranean Basin.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2015-093
2016-06-28
2024-03-28
Loading full text...

Full text loading...

References

  1. Antoniade, C.
    2015. New biostratigraphical data of Middle-Upper Miocene deposits from Romanian Black Sea Shelf. Paper presented at the SPE Romania Conference on 65 Years of ICPT Campina, May 2015, Campina, Romania.
    [Google Scholar]
  2. Bache, F., Olivet, J.L., Gorini, C., Rabineau, M., Baztan, J., Aslanian, D. & Suc, J.P.
    2009. Messinian erosional and salinity crises: View from the Provance Basin (Gulf of Lions, Western Mediterranean). Earth and Planetary Science Letters, 286, 139–158.
    [Google Scholar]
  3. Bache, F., Popescu, S.-M. et al.
    2012. A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Research, 24, 125–153.
    [Google Scholar]
  4. Bartol, J. & Govers, R.
    2009. Flexure due to the Messinian-Pontian sea level drop in the Black Sea. Geochemistry, Geophysics, Geosystems, 10, Q10013.
    [Google Scholar]
  5. Bega, Z. & Ionescu, G.
    2009. Neogene structural styles of the NW Black Sea regiona, offshore Romania. The Leading Edge, 28, 1082–1089.
    [Google Scholar]
  6. Bercea, R.-I., Krezsek, C., Dudus, R. & Schleder, Z.
    2016. Sedimentology and tectonic style of the Lower Cretaceous syn-rift deposits offshore Black sea (Romania) and their onshore analogues. Abstract presented at the AAPG Europe Conference, 18–19 May 2016, Bucharest, Romania.
    [Google Scholar]
  7. Clauzon, G., Suc, J.-P., Gautier, F., Berger, A. & Loutre, M.-F.
    1996. Alternate interpretation of the Messinian salinity crisis: Controversy resolved?Geology, 24, 363–366.
    [Google Scholar]
  8. Clauzon, G., Suc, J.-P., Popescu, S.M., Marinteanu, M., Rubino, J.-L., Marinescu, F. & Melinte, M.C.
    2005. Influence of the Mediterranean sea-level changes on the Dacic Basin (Eastern Parartehys) during the late Neogene: the Mediterranean LagoMare facies deciphered. Basin Research, 17, 437–462.
    [Google Scholar]
  9. Csató, I., Tóth, S., Cătuneanu, O. & Granjeon, D.
    2015. A sequence stratigraphic model for the Upper Miocene – Pliocene fill of the Pannonian Basin, eastern Hungary. Marine and Petroleum Geology, 66/1, 117–134.
    [Google Scholar]
  10. Dinu, C., Wong, H.K., Ţambrea, D. & Maţenco, L.
    2005. Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics, 410, 417–435.
    [Google Scholar]
  11. Floroiu, A., Stoica, M., Munteanu, I. & Dinu, C.
    2010. New stratigraphical data of Upper Miocene – Pliocene deposits from Romanian Black Sea shelf. AAPG Search and Discovery Article 90109, AAPG European Region Annual Conference, 17–19 October 2010, Kiev.
    [Google Scholar]
  12. Gillet, H., Lericolais, G. & Rehault, J.-P.
    2007. Messinian event in the Black Sea: Evidence of a Messinian erosional surface. Marine Geology, 244, 142–165.
    [Google Scholar]
  13. Grothe, A., Sangiorgi, F. et al.
    2014. Black Sea desiccation during the Messinian Salinity Crisis: Fact or fiction?Geology, 42, 563–586.
    [Google Scholar]
  14. Hsü, K.J. & Giovanoli, F.
    1979. Messinian event in the Black Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 29, 75–93.
    [Google Scholar]
  15. Jipa, D.C. & Olariu, C.
    2009. Dacian Basin. Depositional Architecture and Sedimentary History of a Paratethys Sea. Geo-Eco-Marina, Special Publication, 3.
    [Google Scholar]
  16. Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V.V.
    2010. Rise and fall of the Paratethys Sea during the Messinian salinity crisis. Earth and Planetary Science Letters, 290, 183–191.
    [Google Scholar]
  17. Lăpădat, A., Schleder, Z. et al.
    2013. Gravity-driven deformation in the Miocene sequence: interplay between tectonics and eustasy case study from Romanian offshore, western Black Sea. AAPG Search and Discovery Article 90161, AAPG European Regional Conference, 8–10 April 2013, Barcelona.
    [Google Scholar]
  18. Lericolais, G., Bourget, J., Popescu, I., Jermannaud, P., Mulder, T., Jorry, S. & Panin, N.
    2013. Late Quaternary deep-sea sedimentation in the western Black Sea: New insights from recent coring and seismic data in the deep basin. Global and Planetary Change, 103, 232–247.
    [Google Scholar]
  19. Leveer, K.A., Maţenco, L., Rabagia, T. Cloetingh, S., Krijgsman, W. & Stoica, M.
    2009. Messinian sea level fall in the Dacic Basin (Eastern Paratethys): paleogeographical implications from seismic sequence stratigraphy. Terra Nova, 22, (1), 12–17.
    [Google Scholar]
  20. Magyar, I. & Sztanó, O.
    2008. Is there a Messinian unconformity in the Central Paratethys?Stratigraphy, 5, 245–255.
    [Google Scholar]
  21. Magyar, I., Radivojević, D., Sztanó, O., Synak, R., Ujszászi, K. & Pócsik, M.
    2013. Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, 103, 168–173.
    [Google Scholar]
  22. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M. & Sierro, F.J.
    2013. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, (4), 315–322.
    [Google Scholar]
  23. Maţenco, L., Munteanu, I. et al.
    2016. The interplay between tectonics, sediment dynamics and gateways evolution in the Danube system from the Pannonian Basin to the western Black Sea. Science of the Total Environment, 543, 807–827.
    [Google Scholar]
  24. Munteanu, I., Maţenco, L., Dinu, C. & Cloetingh, S.
    2011. Kinematics of the back-arc inversion of the Western Black Sea. Tectonics, 30, TC5004.
    [Google Scholar]
  25. 2012. Effects of large sea-level variations in connected basins: the Dacian – Black Sea system of the Eastern Paratethys. Basin Research, 24, 583–597.
    [Google Scholar]
  26. Nikishin, A., Okay, A.I., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N. & Petrov, E.
    2015. The Black Sea Basins structure and history: new model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Marine and Petroleum Geology, 59, 656–670.
    [Google Scholar]
  27. Okay, A.I., Sengor, A.M.C. & Gorur, N.
    1994. Kinematic history of the opening if the Black Sea and its effect on surrounding regions. Geology, 22, 267–270.
    [Google Scholar]
  28. Olariu, C., Krezsek, C. & Jipa, D.
    2016. Inception of the continental scale Danube River: on the time of its arrival into the Black Sea Basin as it formed from segmented Paratethyan Basins. Abstract presented at the AAPG Europe Conference, 18–19 May 2016, Bucharest, Romania.
    [Google Scholar]
  29. Popescu, S.-M.
    2006. Late Miocene and early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 64–77.
    [Google Scholar]
  30. Popescu, S.-M., Melinte-Dobrinescu, M.C. & Suc, J.-P.
    2016. Objective utilization of data from DSDP Site 380 (Black Sea). Comment on the paper ‘Messinian events in the Black Sea’ by van Baak et al. (Terra Nova, 2015, 27, 433–441). Terra Nova, 28, 228–229.
    [Google Scholar]
  31. Robinson, A.G., Rudat, J.H., Banks, C.J. & Wiles, R.L.F.
    1996. Petroleum geology of the Black Sea. Marine and Petroleum Geology, 13, 195–223.
    [Google Scholar]
  32. Rögl, F.
    1996. Stratigraphic correlation of the Paratethys Oligocene and Miocene. Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Osterreich, 41, 65–73.
    [Google Scholar]
  33. Sacleux, M., Nikishin, A., Munsch, H., Floodpage, J. & Cornu, T.
    2012. The impact of the Messinian crisis on petroleum systems. AAPG Search and Discovery Article 120098, AAPG Hedberg Conference Petroleum Systems: Modeling the Past, Planning the Future, October 1–5 2012, Nice, France.
    [Google Scholar]
  34. Schleder, Z., Krezsek, C., Turi, V., Tari, G., Kosi, W. & Fallah, M.
    2015. Regional structure of the Western Black Sea Basin: constraints from cross-section balancing. Paper presented at the Petroleum Systems in Rift Basins, the 34th Annual GCSEPM Foundation Perkins–Rosen Research Conference, 13–16 December 2015, Houston, Texas, USA.
    [Google Scholar]
  35. Schleder, Z., Krezsek, C., Lapadat, A., Bega, Z., Ionescu, G. & Tari, G.
    2016. Messinian (intra-Pontian) gravity-driven deformation above mobile shale in the western Black Sea, offshore Romania. Structural style in a Messinian (intra-Pontian) gravity-driven deformation system, Western Black Sea, offshore Romania. Petroleum Geoscience, 22.
    [Google Scholar]
  36. Stoica, M., Lazar, I., Krijgsman, W., Vasiliev, I., Jipa, D. & Floroiu, A.
    2013. Paleoenvironmental evolution of the East Carpathian foredeep during the late Miocene – early Pliocene (Dacian Basin; Romania). Global and Planetary Change, 103, 135–148.
    [Google Scholar]
  37. Suc, J.-P., Bache, F., Çağatay, M.N. & Csato, I.
    2015a. Messinian events and hydrocarbon exploration in the Mediterranean: an introduction. Marine and Petroleum Geology, 66, 1–5.
    [Google Scholar]
  38. Suc, J.-P., Gillet, H. et al.
    2015b. The region of the Strandja Sill (North Turkey) and the Messinian events. Marine and Petroleum Geology, 66, 149–164.
    [Google Scholar]
  39. Suc, J.-P., Popescu, S.-M. et al.
    2015c. Marine gateway v. fluvial stream within the Balkans from 6 to 5 Ma. Marine and Petroleum Geology, 66, 231–245.
    [Google Scholar]
  40. Ţambrea, D.
    2007. Subsidence analysis and tectono-thermal evolution of the Histria depression (Black Sea): Inferences for hydrocarbon generation. PhD thesis, University of Bucharest, Bucharest.
    [Google Scholar]
  41. Tari, G., Kosi, W. et al.
    2014. Messinian-style drawdown in the Black Sea at the End Eocene. AAPG Search and Discovery Article 90194, AAPG International Conference and Exhibition, 14–17 September 2014, Istanbul, Turkey.
    [Google Scholar]
  42. Tari, G., Fallah, M., Kosi, W., Floodpage, J., Baur, J., Bati, Z. & Sipahioglu, N.O.
    2015a. Is the impact of the Messinian Salinity Crisis in the Black Sea comparable to that of the Mediterranean?Marine and Petroleum Geology, 66, 135–148.
    [Google Scholar]
  43. Tari, G., Fallah., M., Kosi, W., Schleder, Z., Turi, V. & Krezsek, C.
    2015b. Regional rift structure of the Western Black Sea Basin: map-view kinematics. Paper presented at the Petroleum Systems in Rift Basins, the 34th Annual GCSEPM Foundation Perkins–Rosen Research Conference, 13–16 December 2015, Houston, Texas, USA.
    [Google Scholar]
  44. Tari, G., Fallah, M. et al.
    2016. Why are there no Messinian evaporites in the Black Sea?Petroleum Geoscience, 22.
    [Google Scholar]
  45. van Baak, C.G.C., Radionova, E.P., Golovina, L.A., Raffi, I., Kuiper, K.F., Vasiliev, I. & Krijgsman, W.
    2015. Messinian events in the Black Sea. Terra Nova, 27, 433–441.
    [Google Scholar]
  46. Vasiliev, I., Iosifidi, A.G. et al.
    2011. Magnetostratigraphy and radiometric dating of upper Miocene – lower Pliocene sedimentary successions of the Black Sea basin (Taman Peninsula, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 163–175.
    [Google Scholar]
  47. Vasiliev, I., Reichart, G.-J. et al.
    2015. Recurrent phases of drought in the upper Miocene of the Black Sea region. Palaeogeography, Palaeoclimatology, Palaeoecology, 423, 18–31.
    [Google Scholar]
  48. Wood, L.J.
    2012. Shale tectonics. In: Roberts, D.G. & Bally, A.W. (eds) Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps, Volume 1C. Elsevier, Amsterdam, 43–61.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2015-093
Loading
/content/journals/10.1144/petgeo2015-093
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed