1887
Volume 23, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Relay ramps can act as conduits for fluid flow in producing hydrocarbon reservoirs, but the two bounding faults are often at the limit of seismic resolution. To study the impact of relay ramps and their fluid composition on seismic data, we present an integrated workflow combining flow simulation in a geomodel of an outcrop relay ramp, forward seismic modelling and seismic-attribute-based volume extraction. In the chosen outcrop of the Arches National Park (Utah, USA), the petrophysical properties are conditioned by deformation bands present in the sandstone, and are used to run a simple water injector–oil producer fluid-flow simulation. Pre-stack depth-migration seismic images are obtained at  = 0,  = 10 and  = 20 years of the flow simulation. The seismic image porosity changes at  = 0 when the model is oil-saturated, whereas the water–oil contacts have stronger amplitude contrasts at later stages. With an adapted attribute-based workflow, we are able to extract geobodies corresponding to the faults and the relay ramp from the three seismic cubes. By varying workflow parameters, we also show reservoir and acquisition conditions that can affect the resolution of the relay ramp on the seismic image either positively or negatively.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-027
2017-02-01
2020-04-05
Loading full text...

Full text loading...

References

  1. Antonellini, M. & Aydin, A.
    1994. Effect of faulting on fluid flow in porous sandstones: petrophysical properties. American Association of Petroleum Geologists Bulletin, 78, 355–377.
    [Google Scholar]
  2. 1995. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. American Association of Petroleum Geologists Bulletin, 79, 642–671.
    [Google Scholar]
  3. Bahorich, M. & Farmer, S.
    1995. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge, 14, 1053–1058.
    [Google Scholar]
  4. Batzle, M. & Wang, Z.
    1992. Seismic properties of pore fluids. Geophysics, 57, 1396–1408.
    [Google Scholar]
  5. Botter, C., Cardozo, N., Hardy, S., Lecomte, I., Paton, G. & Escalona, A.
    2016. Seismic characterisation of fault damage in 3D using mechanical and seismic modelling. Marine and Petroleum Geology, 77, 973–990.
    [Google Scholar]
  6. Childs, C., Watterson, J. & Walsh, J.J.
    1995. Fault overlap zones within developing normal fault systems. Journal of the Geological Society, London, 152, 535–549, http://doi.org/10.1144/gsjgs.152.3.0535
    [Google Scholar]
  7. Chopra, S. & Marfurt, K.J.
    2005. Seismic attributes – a historical perspective. Geophysics, 70, 3SO–28SO.
    [Google Scholar]
  8. Doelling, H.H.
    2001. Geologic Map of the Moab and Eastern Part of the San Rafael Desert 30′_60′ Quadrangles, Grand and Emery Counties, Utah, and Mesa County, Colorado. Map 180.Utah Geological Survey, Salt Lake City, UT, USA.
    [Google Scholar]
  9. Dutzer, J.F., Basford, H. & Purves, S.
    2010. Investigating fault-sealing potential through fault relative seismic volume analysis. Petroleum Geology Conference Proceedings, 7, 509–515.
    [Google Scholar]
  10. Fachri, M., Rotevatn, A. & Tveranger, J.
    2013. Fluid flow in relay zones revisited: Towards an improved representation of small-scale structural heterogeneities in flow models. Marine and Petroleum Geology, 46, 144–164.
    [Google Scholar]
  11. Fossen, H. & Bale, A.
    2007. Deformation bands and their influence on fluid flow. American Association of Petroleum Geologists Bulletin, 91, 1685–1700.
    [Google Scholar]
  12. Fossen, H. & Rotevatn, A.
    2016. Fault linkage and relay structures in extensional settings – A review. Earth-Science Reviews, 154, 14–28.
    [Google Scholar]
  13. Fossen, H., Schultz, R.A., Shipton, Z.K. & Mair, K.
    2007. Deformation bands in sandstone: A review. Journal of the Geological Society, London, 164, 755–769, http://doi.org/10.1144/0016-76492006-036
    [Google Scholar]
  14. Gassmann, F.
    1951. Elasticity of porous media. Vierteljahrsschrder Naturforschenden Gesselschaft, 96, 1–23.
    [Google Scholar]
  15. Gersztenkorn, A. & Marfurt, K.J.
    1999. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics, 64, 1468–1479.
    [Google Scholar]
  16. Giba, M., Walsh, J.J. & Nicol, A.
    2012. Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267.
    [Google Scholar]
  17. Hesthammer, J. & Fossen, H.
    1997. Seismic attribute analysis in structural interpretation of the Gullfaks Field, northern North Sea. Petroleum Geoscience, 3, 3–26, http://doi.org/10.1144/petgeo.3.1.1
    [Google Scholar]
  18. Iacopini, D. & Butler, R.W.H.
    2011. Imaging deformation in submarine thrust belts using seismic attributes. Earth and Planetary Science Letters, 302, 414–422.
    [Google Scholar]
  19. Iacopini, D., Butler, R. & Purves, S.
    2012. Seismic imaging of thrust faults and structural damage: a visualization workflow for deepwater thrust belts. First Break, 30, 77–84.
    [Google Scholar]
  20. Iacopini, D., Butler, R.W.H., Purves, S., McArdle, N. & De Freslon, N.
    2016. Exploring the seismic expression of fault zones in 3D seismic volumes. Journal of Structural Geology, 89, 54–73.
    [Google Scholar]
  21. Kim, Y.-S., Peacock, D.C. & Sanderson, D.J.
    2004. Fault damage zones. Journal of Structural Geology, 26, 503–517.
    [Google Scholar]
  22. Lecomte, I.
    2008. Resolution and illumination analyses in PSDM: A ray-based approach. The Leading Edge, 27, 650–663.
    [Google Scholar]
  23. Lecomte, I., Lavadera, P.L., Anell, I., Buckley, S.J., Schmid, D.W. & Heeremans, M.
    2015. Ray-based seismic modeling of geologic models: Understanding and analyzing seismic images efficiently. Interpretation, 3, SAC71–SAC89.
    [Google Scholar]
  24. Lecomte, I., Lavadera, P.L. et al.
    2016. 2(3)D convolution modelling of complex geological targets beyond – 1D convolution. First Break, 34, 99–107.
    [Google Scholar]
  25. Long, J.J. & Imber, J.
    2010. Geometrically coherent continuous deformation in the volume surrounding a seismically imaged normal fault-array. Journal of Structural Geology, 32, 222–234.
    [Google Scholar]
  26. 2012. Strain compatibility and fault linkage in relay zones on normal faults. Journal of Structural Geology, 36, 16–26.
    [Google Scholar]
  27. Manzocchi, T., Childs, C. & Walsh, J.J.
    2010. Faults and fault properties in hydrocarbon flow models. Geofluids, 10, 94–113.
    [Google Scholar]
  28. Marfurt, K.J. & Alves, T.M.
    2015. Pitfalls and limitations in seismic attribute interpretation of tectonic features. Interpretation, 3, SB5–SB15.
    [Google Scholar]
  29. Mavko, G., Mukerji, T. & Dvorkin, J.
    2009. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media (2nd edn). Cambridge University Press, New York.
    [Google Scholar]
  30. Peacock, D.C.P. & Sanderson, D.J.
    1994. Geometry and development of relay ramps in normal fault systems. American Association of Petroleum Geologists Bulletin, 78, 147–165.
    [Google Scholar]
  31. Rotevatn, A. & Fossen, H.
    2011. Simulating the effect of subseismic fault tails and process zones in a siliciclastic reservoir analogue: Implications for aquifer support and trap definition. Marine and Petroleum Geology, 28, 1648–e1662.
    [Google Scholar]
  32. Rotevatn, A., Fossen, H., Hesthammer, J., Aas, T.E. & Howell, J.A.
    2007. Are relay ramps conduits for fluid flow? Structural analysis of a relay ramp in Arches National Park, Utah. In: Lonergan, L., Sanderson, D.J., Jolly, R.J.H. & Rawnsley, K. (eds) Fractured Reservoirs. Geological Society, London, Special Publications, 270, 55–71, http://doi.org/10.1144/GSL.SP.2007.270.01.04
    [Google Scholar]
  33. Rotevatn, A., Tveranger, J., Howell, J.A. & Fossen, H.
    2009. Dynamic investigation of the effect of a relay ramp on simulated fluid flow: geocellular modelling of the Delicate Arch Ramp, Utah. Petroleum Geoscience, 15, 45–58, http://doi.org/10.1144/1354-079309-779
    [Google Scholar]
  34. Torabi,A., Alaei, B. & Kolyukhin, D.
    2016a. Analysis of fault scaling relations using fault seismic attributes. Geophysical Prospecting, http://doi.org/10.1111/1365-2478.12440
    [Google Scholar]
  35. Torabi, A., Alaei, B., Kolyukhin, D., Libak, R.H., Gabrielsen, R.H. & Braathen, A.
    2016b. Fault geometric and seismic attributes – an integrated study with focus on the Barents Sea. First Break, 34, 73–80.
    [Google Scholar]
  36. Walsh, J., Bailey, W., Childs, C., Nicol, A. & Bonson, C.
    2003. Formation of segmented normal faults: a 3-D perspective. Journal of Structural Geology, 25, 1251–1262.
    [Google Scholar]
  37. Yielding, G., Bretan, P. & Freeman, B.
    2010. Fault seal calibration: a brief review. In: Jolley, S.J., Fisher, Q.J., Ainsworth, R.B., Vrolijk, P.J. and Delisle, S. (eds) Reservoir Compartmentalization. Geological Society of London, Special Publications, 347, 243–255, http://doi.org/10.1144/SP347.14
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-027
Loading
/content/journals/10.1144/petgeo2016-027
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error