1887
Volume 23, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

In contrast to faults in clastic reservoirs, rules to predict the exploration and production timescale fault-seal potential in carbonates are lacking. This paper provides a summary of carbonate reservoirs with cross-fault column height differences that represent examples of apparent static fault seal, and a summary of observed examples of dynamic fault seal in carbonate reservoirs and aquifers. These include cross-fault differences in water table depths across carbonate–carbonate juxtapositions, cross-fault pressure differences in carbonate aquifers separated by faults, production-induced cross-fault pressure differences in carbonate hydrocarbon reservoirs, sealing behaviour of faults in carbonate reservoirs inferred from well tests, and examples of low fault transmissibilities from history-matching exercises from carbonate reservoirs. This paper also documents the range of compositions of fault rocks in carbonates and the range of permeabilities that have been reported from low-permeability fault cores in carbonate fault zones, as well as the implications of the observed range of fault permeabilities in carbonates for sealing behaviours. The purpose of this paper is not to argue that every fault in a carbonate reservoir will seal or will even be capable of sealing. There are, however, enough examples of faults in carbonates that are sealing in a dynamic sense, and in a static sense, that the topic of carbonate fault seal should warrant much more study. Creation of predictive models will ultimately require a considerable amount of subsurface data, but these models should be created.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-044
2016-09-30
2024-04-19
Loading full text...

Full text loading...

References

  1. Agosta, F. & Aydin, A.
    2006. Architecture and deformation mechanisms of a basin-bounding normal fault in Mesozoic plateform carbonates, central Italy. Journal of Structural Geology, 28, 1445–1467.
    [Google Scholar]
  2. Agosta, F., Prasad, M. & Aydin, A.
    2007. Physical properties of carbonate fault rocks, Fucino Basin (Central Italy): implications for fault seal in platform carbonates. Geofluids, 7, 19–32.
    [Google Scholar]
  3. Agosta, F., Ruano, P., Rustichelli, A., Tondi, E., Galindo-Zaldívar, J. & Sanz de Galdeano, C.
    2012. Inner structure and deformation mechanisms of normal faults in conglomerates and carbonate grainstones (Granada Basin, Betic Cordillera, Spain): Inferences on fault permeability. Journal of Structural Geology, 45, 4–20.
    [Google Scholar]
  4. Aki, K.
    2000. Scale-dependence in earthquake processes and seismogenic structures. Pure and Applied Geophysics, 157, 2249–2258.
    [Google Scholar]
  5. Allam, A.A., Ben-Zion, Y., Kurzon, I. & Vernon, F.
    2014. Seismic velocity structure in the Hot Springs and Trifurcation areas of the San Jacinto fault zone, California, from double-difference tomography. Geophysical Journal International, 198, 978–999.
    [Google Scholar]
  6. Anders, M.H., Christie-Blick, N., Willis, S. & Krueger, S.W.
    2001. Rock deformation studies in the Mineral Mountains and Sevier Desert of west-central Utah: implications for upper crustal low-angle normal faulting. Geological Society of America Bulletin, 113, 895–907.
    [Google Scholar]
  7. Anissimov, L., Postnova, E. & Merkulov, O.
    2000. Tengiz oilfield: geological model based on hydrodynamic data. Petroleum Geoscience, 6, 59–65, http://doi.org/10.1144/petgeo.6.1.59
    [Google Scholar]
  8. Antonellini, M. & Mollema, P.
    2000. A natural analog for a fracture and faulted reservoir in dolomite: Triassic Sella Group, northern Italy. AAPG Bulletin, 84, 314–344.
    [Google Scholar]
  9. Antonellini, M., Tondi, E., Agosta, F., Aydin, A. & Cello, G.
    2008. Failure modes in deep-water carbonates and their impact for fault development: Majella Mountain, Central Apennines, Italy. Marine and Petroleum Geology, 25, 1074–1096.
    [Google Scholar]
  10. Antonellini, M., Cilona, A., Tondi, E., Zambrano, M. & Agosta, F.
    2014. Fluid flow numerical experiments of faulted porous carbonates, northwest Sicily (Italy). Marine and Petroleum Geology, 55, 186–201.
    [Google Scholar]
  11. Balsamo, F., Clemenzi, L. et al.
    2016. Anatomy and paleofluid evolution of laterally restricted extensional fault zones in the Jabal Qusaybah anticline, Salakh arch, Oman. Geological Society of America Bulletin, first published online February 10, 2016, http://doi.org/10.1130/B31317.1
    [Google Scholar]
  12. Bangs, N.L., Shipley, T.H. & Moore, G.F.
    1996. Elevated fluid pressure and fault zone dilation inferred from seismic models of the northern Barbados Ridge decollement. Journal of Geophysical Research, 101, 627–642.
    [Google Scholar]
  13. Baqués, V., Travé, A., Benedicto, A., Labaume, P. & Cantarero, I.
    2010. Relationships between carbonate fault rocks and fluid flow regime during propagation of the Neogene extensional faults of the Penedes basin (Catalan Coastal Ranges, NE Spain). Journal of Geochemical Exploration, 106, 24–33.
    [Google Scholar]
  14. Bartel, E.M., Neubauer, F., Heberer, B. & Genser, J.
    2014. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps. Journal of Structural Geology, 69, 18–31.
    [Google Scholar]
  15. Bastesen, E. & Braathen, A.
    2010. Extensional faults in fine grained carbonates -- analysis of fault core lithology and thickness-displacement relationships. Journal of Structural Geology, 32, 1609–1628.
    [Google Scholar]
  16. Bastesen, E., Braathen, A., Nøttveit, H., Gabrielsen, R.H. & Skar, T.
    2009. Extensional fault cores in MI critic carbonate - Case studies from the Gulf of Corinth, Greece. Journal of Structural Geology, 31, 403–420.
    [Google Scholar]
  17. Bastesen, E., Braathen, A. & Skar, T.
    2013. Comparison of scaling relationships of extensional fault cores in tight carbonate and porous sandstone reservoirs. Petroleum Geoscience, 19, 385–398, http://doi.org/10.1144/petgeo2011-020
    [Google Scholar]
  18. Bauer, H., Schröckenfuchs, T.C. & Decker, K.
    2016. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria). Hydrogeology Journal, no volume, 1–24.
    [Google Scholar]
  19. Billi, A.
    2003. Solution slip and separations on strike-slip fault zones: theory and application to the Mattinata Fault, Italy. Journal of Structural Geology, 25, 703–715.
    [Google Scholar]
  20. Billi, A., Salvini, F. & Storti, F.
    2003. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology, 25, 1779–1794.
    [Google Scholar]
  21. Billi, A., Primavera, P., Soligo, M. & Tuccimei, P.
    2008. Minimal mass transfer across dolomitic granular fault cores. Geochemistry Geophysics Geosystems, 9, Q01001, http://doi.org/10.1029/2007GC001752
    [Google Scholar]
  22. Birkle, P. & Angulo, M.
    2005. Conceptual hydrochemical model of late Pleistocene aquifers at the Samario-Sitio Grande petroleum reservoir, Gulf of Mexico, Mexico. Applied Geochemistry, 20, 1077–1098.
    [Google Scholar]
  23. Birkle, P., Angula, M. & Lima, S.
    2006. Hydrochemical-isotopic tendencies to define hydraulic mobility of formation water at the Samaria-Sitio Grande oil field, Mexico. Journal of Hydrology, 317, 202–220.
    [Google Scholar]
  24. Bockel-Rebelle, M.-O., Hassall, J.K. et al.
    2004. Faults, fracture corridors and diffuse fracturing: ranking the main structural heterogeneities within onshore Abu Dhabi fields. Paper SPE 88676, presented at the 11th Abu Dhabi International Petroleum Exhibition and Conference.
    [Google Scholar]
  25. Bonson, C.G., Childs, C., Walsh, J.J., Schöpfer, M.P.J. & Carboni, V.
    2007. Geometric and kinematic controls on the internal structure of a large normal fault in massive limestones: the Maghlaq Fault, Malta. Journal of Structural Geology, 29, 336–354.
    [Google Scholar]
  26. Boulton, C., Carpenter, B.M., Toy, V. & Maroni, C.
    2012. Physical properties of surface outcrop cataclastic fault rocks, Alpine Fault, New Zealand. Geochemistry Geophysics Geosystems, 13, Q01018, http://doi.org/10.1029/2011GC003872
    [Google Scholar]
  27. Boyer, S.E.
    1978. Structure and origin of the Grandfather Mountain window. PhD thesis, Johns Hopkins University, Baltimore(from Wibberley, 2005).
    [Google Scholar]
  28. Bradbury, K.K., Barton, D.C., Solum, J.G., Draper, S.D. & Evans, J.P.
    2007. Mineralogical and textural analysis of drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: Initial interpretations of fault zone composition and constraints on geologic models. Geosphere, 3, 299–318.
    [Google Scholar]
  29. Bretan, P., Yielding, G. & Jones, H.
    2003. Using calibrated shale gouge ratio to estimate hydrocarbon column heights. AAPG Bulletin, 87, 397–413.
    [Google Scholar]
  30. Brogi, A.
    2008. Fault zone architecture and permeability features in siliceous sedimentary rocks: Insights from the Rapolano geothermal area (Northern Apennines, Italy). Journal of Structural Geology, 30, 237–256.
    [Google Scholar]
  31. Brogi, A. & Novellino, R.
    2015. Low Angle Normal Fault (LANF)-zone architecture and permeability features in bedded carbonate from inner Northern Apennines (Rapolano Terme, Central Italy). Tectonophysics, 638, 126–146.
    [Google Scholar]
  32. Bruhn, R.L., Yonkee, W.A. & Parry, W.T.
    1990. Structural and fluid-chemical properties of seismogenic normal faults. Tectonophysics, 175, 139–157.
    [Google Scholar]
  33. Bullock, R.J., De Paola, N., Holdsworth, R.E. & Trabucho-Alexandre, J.
    2014. Lithological controls on the deformation mechanisms operating within carbonate-hosted faults during the seismic cycle. Journal of Structural Geology, 58, 22–42.
    [Google Scholar]
  34. Bussolotto, M., Benedicto, A., Invernizzi, C., Micarelli, L., Plagnes, V. & Deiana, G.
    2007. Deformation features within an active normal fault zone in carbonate rocks: The Gubbio fault (Central Apennines, Italy). Journal of Structural Geology, 29, 2017–2037.
    [Google Scholar]
  35. Bussolotto, M., Benedicto, A., Moen-Maurel, L. & Invernizzi, C.
    2015. Fault deformation mechanisms and fault rocks in micritic limestones: Examples from Corinth rift normal faults. Journal of Structural Geology, 77, 191–212.
    [Google Scholar]
  36. Caine, J.S., Evans, J.P. & Forster, C.B.
    1996. Fault zone architecture and permeability structure. Geology, 24, 1025–1028.
    [Google Scholar]
  37. Caine, J.S., Bruhn, R.L. & Forster, C.B.
    2010. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada. Journal of Structural Geology, 32, 1576–1589.
    [Google Scholar]
  38. Cappa, F., Guglielmi, Y., Fénart, P., Merrien-Soukatchoff, V. & Thoraval, A.
    2005. Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements. International Journal of Rock Mechanics and Mining Sciences, 42, 287–306.
    [Google Scholar]
  39. Cappa, F., Guglielmi, Y. & Virieux, J.
    2007. Stress and fluid transfer in a fault zone due to overpressures in the seismogenic crust. Geophysical Research Letters, 34, L05301, http://doi.org/10.1029/2006GL-28980, 2007
    [Google Scholar]
  40. Cavailhes, T., Sizun, J.-P. et al.
    2013. Influence of fault rock foliation on fault zone permeability: The case of deeply buried arkosic sandstones (Grès d'Annot, southeastern France). AAPG Bulletin, 97, 1521–1543.
    [Google Scholar]
  41. Celico, F., Petrella, E. & Celico, P.
    2006. Hydrogeological behaviour of some fault zones in a carbonate aquifer of southern Italy: an experimentally based model. Terra Nova, 18, 308–313.
    [Google Scholar]
  42. Cembrano, J., Gonzalez, G., Arancibia, G., Ahumada, I., Olivares, V. & Herrera, V.
    2005. Fault zone development and strain partioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics, 400, 105–125.
    [Google Scholar]
  43. Chambon, G., Schmittbuhl, J., Corfdir, A., Orellana, N., Diraison, M. & Geraud, Y.
    2006. The thickness of faults: from laboratory experiments to field scale observations. Tectonophysics, 426, 77–94.
    [Google Scholar]
  44. Chernyshev, S.N. & Dearman, W.R.
    1991. Rock Fractures. Butterworth-Heinemann, London.
    [Google Scholar]
  45. Chester, F.M. & Logan, J.M.
    1986. Implications for mechanical properties of brittle faults from observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics, 124, 79–106.
    [Google Scholar]
  46. Chester, F.M., Chester, J.S., Kirschner, D.L., Schulz, S.E. & Evans, J.P.
    2004. Structure of large-displacement, strike-slip fault zones in the brittle continental crust. In: Karner, G.D., Taylor, B., Driscoll, N.W. & Kohlstedt, D.L. (eds) Rheology and Deformation in the Lithosphere at Continental Margins. MARGINS Theoretical and Experimental Earth Science Series, 1 . Columbia University Press, New York, 223–260.
    [Google Scholar]
  47. Chester, J.S.
    2001. Structure and petrology of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault. Annual Project Summary, 42, USGS #00-HQ-GR-0029, http://earthquake.usgs.gov/research/external/reports/00HQGR0029.pdf .
    [Google Scholar]
  48. Childs, C., Nicol, A., Walsh, J.J. & Watterson, J.
    1996. Growth of vertically segmented normal faults. Journal of Structural Geology, 18, 1389–1397.
    [Google Scholar]
  49. Childs, C., Walsh, J.J. & Watterson, J.
    1997. Complexity in fault zone structure and implications for fault seal prediction. In: Møller-Pedersen, P. & Koestler, A.G. (eds) Hydrocarbon Seals Importance for Exploration and Production. Norwegian Petroleum Society, Special Publications, 7, 61–72.
    [Google Scholar]
  50. Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A. & Schopfer, M.P.J.
    2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31, 117–127.
    [Google Scholar]
  51. Christie, J.M.
    1960. Mylonitic rocks in the Moine thrust zone in the Assynt region, North-west Scotland. Transactions of the Edinburgh Geological Society, 18, 79–93(compiled by Wibberley 2005), http://doi.org/10.1144/transed.18.1.79
    [Google Scholar]
  52. Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A. & Spiers, C.J.
    2012. Deformation bands in porous carbonate grainstones: Field and laboratory observations. Journal of Structural Geology, 45, 137–157.
    [Google Scholar]
  53. Cochran, E.S., Li, Y.-G., Shearer, P.M., Barbot, S., Fialko, Y. & Vidale, J.E.
    2009. Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology, 37, 315–318.
    [Google Scholar]
  54. Collettini, C., Carpenter, B.M. et al.
    2014. Fault structure and slip localization in carbonate-bearing normal faults: An example from the northern Apennines of Italy. Journal of Structural Geology, 67, 154–166.
    [Google Scholar]
  55. Cook, J.E., Dunne, W.M. & Onasch, C.M.
    2006. Development of a dilatant damage zone along a thrust relay in a low-porosity quartz arenite. Journal of Structural Geology, 28, 776–792.
    [Google Scholar]
  56. Corbett, K.P., Friedman, M., Wiltschko, D.V. & Hung, J.H.
    1991. Controls on fracture development, spacing, and geometry in the Austin Chalk Formation, Central Texas: Considerations for exploration and production. Dallas Geological Society, Field Trip #4.
    [Google Scholar]
  57. Cornet, F.H., Doan, M.L., Moretti, I. & Borm, G.
    2004. Drilling through the active Aigion Fault, the AIG10 well observatory. Comptes Rendus Geoscience, 336, 395–406.
    [Google Scholar]
  58. Corona, F.V., Brauckmann, F., Beckmann, H., Gobi, A., Grassman, S., Neble, J. & Roettgen, K.
    2012. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin. Abstract A06, presented at the 3rd International Conference on Fault and Top Seals – From Characterization to Modeling, 1–3 October, 2012, Montpellier, France.
    [Google Scholar]
  59. Coyne et Bellier
    2014. Techno-economic Assessment Study for Rogun Hydroelectric Construction Project, Phase II Report (Draft Final): Project Definition Option. Vol. 1, Summary, http://rogunges.tj/us/media/docs/iteoen.pdf
    [Google Scholar]
  60. Cui, M. & Tang, L.
    2010. Fault Sealing and Mechanical Stratigraphy in Carbonate Rocks, Southeast Guizhou, China. AAPG Search and Discovery Article #40476.
    [Google Scholar]
  61. Davatzes, N.C. & Aydin, A.
    2003. Overprinting faulting mechanisms in high porosity sandstones of SE Utah. Journal of Structural Geology, 25, 1795–1813.
    [Google Scholar]
  62. de Joussineau, G. & Aydin, A.
    2007. The evolution of the damage zone with fault growth in sandstone and its multiscale characteristics. Journal of Geophysical Research, 112, http://doi.org/10.1029/2006JB004711
    [Google Scholar]
  63. De Paola, N., Collettini, C., Faulkner, D.R. & Trippetta, F.
    2008. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics, 27, TC4017, http://doi.org/10.1029/2007TC002230
    [Google Scholar]
  64. Dockrill, B. & Shipton, Z.K.
    2010. Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, USA. Journal of Structural Geology, 32, 1768–1782.
    [Google Scholar]
  65. Draper Springer, S., Evans, J.P., Garver, J.I., Kirschner, D. & Janecke, S.
    2009. Arkosic rocks from the San Andreas Fault Observatory at Depth (SAFOD) borehole, central California: Implications for the structure and tectonics of the San Andreas fault zone. Lithosphere, 1, 206–226.
    [Google Scholar]
  66. Efstratios, D.
    2011. Quantitative analysis of geometric evolution of fault zones of Mavropigis’ lignite field in Ptolemais Basin (W. Macedonia, Greece). MSc Thesis, Aristotle University of Thessaloniki.
    [Google Scholar]
  67. Elvik, L.
    2012. Characterisation of extensional faults in carbonate rocks (Suez Rift, Egypt); with particular focus on the role of shale smear. MSc Thesis, University of Bergen.
    [Google Scholar]
  68. Evans, J.P.
    1988. Deformation mechanisms in granitic rocks at shallow crustal levels. Journal of Structural Geology, 10, 437–443.
    [Google Scholar]
  69. Fabricius, I.L. & Rana, M.A.
    2010. Tilting oil–water contact in the chalk of Tyra Field as interpreted from capillary pressure data. In: Vining, B.A. & Pickering, S.C. (eds) Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference , 463–472, http://doi.org/10.1144/0070463
    [Google Scholar]
  70. Fagereng, A., Smith, Z., Rowe, C.D., Makhubu, B. & Sylvester, F.Y.G.
    2014. Stress, strain, and fault behavior at a thrust ramp: Insights from the Naukluft thrust, Namibia. Journal of Structural Geology, 58, 95–107.
    [Google Scholar]
  71. Faulkner, D.R., Lewis, A.C. & Rutter, E.
    2003. On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367, 235–251.
    [Google Scholar]
  72. Faulkner, D.R., Mitchell, T.M., Rutter, E.H. & Cembrano, J.
    2008. On the structure and mechanical properties of large strike-slip faults. In: Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E. & Collettini, C. (eds) The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties . Geological Society, London, Special Publications, 299, 139–150, http://doi.org/10.1144/SP299.9
    [Google Scholar]
  73. Faulkner, D.R., Mitchell, T.M., Kensen, E. & Cembrano, J.
    2011. Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research, 116, B05403, http://doi.org/10.1029/2010JB007788 .
    [Google Scholar]
  74. Ferrill, D.A., Morris, A.P., McGinnis, R.N., Smart, K.J. & Ward, W.C.
    2011. Fault zone deformation and displacement partioning in mechanically layered carbonates: the Hidden Valley Fault, Central Texas. AAPG Bulletin, 95, 1383–1397.
    [Google Scholar]
  75. Fletcher, P. & Gay, N.C.
    1971. Analysis of gravity sliding and orogenic translation: discussion. Geological Society of America Bulletin, 82, 2677–2682.
    [Google Scholar]
  76. Fletcher, R.C. & Savage, H.M.
    2007. Coupling between brittle fracture and anticrack-vein pressure solution at asperities along a small-displacement thrust fault in limestone. AGU Fall Meeting, San Francisco. Read from table 1 in Savage & Brodsky (2011).
    [Google Scholar]
  77. Flodin, E.A., Aydin, A., Durlofsky, L.J. & Yeten, B.
    2001. Representation of fault zone permeability in reservoir flow models. Paper SPE 71617, presented at the 2001 SPE Annual Technical Conference and Exhibition.
    [Google Scholar]
  78. Fondriest, M., Aretusini, S., Di Toro, G. & Smith, S.A.F.
    2015. Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophysics, 654, 56–74.
    [Google Scholar]
  79. Freeman, S.R., Harris, S.D. & Knipe, R.J.
    2010. Cross-fault sealing, baffling and fluid flow in 3D geological models: tools for analysis, visualization and interpretation. In: Jolley, S.J., Fisher, Q.J., Ainsworth, R.B., Vrolijk, P.J. & Delisle, S.J. (eds) Reservoir Compartmentalization . Geological Society, London, Special Publications, 347, 257–282, http://doi.org/10.1144/SP347.15
    [Google Scholar]
  80. Frost, E., Dolan, J., Sammis, C., Hacker, B., Cole, J. & Ratschbacher, L.
    2009. Progressive strain localization in a major strike-slip fault exhumed from midseismogenic depths: structural observations from the Salzach-Ennstal-Mariazell-Puchberg fault system, Austria. Journal of Geophysical Research, 114, B04406, http://doi.org/10.1029/2008JB005763
    [Google Scholar]
  81. Fukuchi, R., Fujimoto, K. et al.
    2014. Changes in illite crystallinity within an ancient tectonic boundary thrust caused by thermal, mechanical, and hydrothermal effects: an example from the Nobeoka Thrust, southwest Japan. Earth, Planets and Space, 66, 116.
    [Google Scholar]
  82. Ganerød, G.V., Braathen, A. & Willemoes-Wissing, B.
    2008. Predictive permeability model of extensional faults in crystalline and metamorphic rocks; verification by pre-grouting in two sub-sea tunnels, Norway. Journal of Structural Geology, 30, 993–1004.
    [Google Scholar]
  83. Gaviglio, P., Bekri, S. et al.
    2009. Faulting and deformation in chalk. Journal of Structural Geology, 31, 194–207.
    [Google Scholar]
  84. Géraud, Y., Diraison, M. & Orellana, N.
    2006. Fault zone geometry of a mature active normal fault: A potential high permeability channel (Pirgaki fault, Corinth rift, Greece). Tectonophysics, 426, 61–76.
    [Google Scholar]
  85. Gherryo, Y.S., Ben Shatwan, M.B., Abrahem, F.A.S. & Heinemann, Z.E.
    2010. Application of a new computer aided history matching approach – A successful case study. Paper SPE 127997, presented at the SPE North African Technical Conference and Exhibition, 14–17 February, 2010, Cairo, Egypt.
    [Google Scholar]
  86. Gilotti, J.A.
    1989. Reaction progress during mylonisation of basaltic dikes along the Särv thrust, Swedish Caledonides. Contributions to Mineralogy and Petrology, 101, 30–45.
    [Google Scholar]
  87. Goldberg, A.
    2009. Integrated dip data, seismic and potential field data interpretation for fault analysis of the Elk/Antelope Gas Field. In: Australian Society of Exploration Geophysicists (ASEG) Extended Abstracts 2009: 20th Geophysical Conference, 15–18 February, 2009, Adelaide, Australia, 1–7.
    [Google Scholar]
  88. Graham, B., Antonellini, M. & Aydin, A.
    2003. Formation and growth of normal faults in carbonates within a compressive environment. Geology, 31, 11–14.
    [Google Scholar]
  89. Graham Wall, B.R., Gribacea, R., Mesonjesi, A. & Aydin, A.
    2006. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust-belt. AAPG Bulletin, 90, 1227–1249.
    [Google Scholar]
  90. Gratier, J.-P.
    2011. Fault permeability and strength evolution related to fracturing and healing episodic processes (years to millennia): the role of pressure solution.Oil & Gas Science and Technology – Revue IFP Energies Nouvelles, 66, 491–506, http://doi.org/10.2516/ogst/2010014
    [Google Scholar]
  91. Gratier, J.-P., Richard, J. et al.
    2011. Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault Observatory at Depth. Geology, 39, 1131–1134.
    [Google Scholar]
  92. Gray, M.B., Stamatakos, J.A., Ferrill, D.A. & Evans, M.A.
    2005. Fault-zone deformation in welded tuffs at Yucca Mountain, Nevada, USA. Journal of Structural Geology, 27, 1873–1891.
    [Google Scholar]
  93. Gudmundsson, A., De Guidi, G. & Scudero, S.
    2013. Length–displacement scaling and fault growth. Tectonophysics, 608, 1298–1309.
    [Google Scholar]
  94. Guglielmi, Y., Henry, P., Cappa, F. & Derode, B.
    2013. Relationships between slow slip, seismicity and fluids leakage during a pressurized fault zone rupture in situ experiment: Importance for reservoir/caprock stimulation monitoring and efficiency assessment. Paper ARMA 13–517, presented at the 47th US Rock Mechanics/Geomechanics Symposium, 23–26 June 2013, San Francisco, California.
    [Google Scholar]
  95. Hadizadeh, J.
    1994. Interaction of cataclasis and pressure solution in a low-temperature carbonate shear zone. Pure and Applied Geophysics, 143, 255–280.
    [Google Scholar]
  96. Hama, K., Amano, K., Metcalfe, R., Yoshida, H., Iwatsuki, T., Milodowski, A.E. & Gillespie, M.R.
    2002. Mineralogical and petrological evidence for the hydrogeological characteristics of the Tsukiyoshi Fault, Japan. Quarterly Journal of Engineering Geology and Hydrogeology, 35, 189–202, http://doi.org/10.1144/1470-923600-27
    [Google Scholar]
  97. Hamahashi, M., Hamada, Y. et al.
    2015. Multiple damage zone structure of an exhumed seismogenic megasplay fault in a subduction zone - a study from the Nobeoka Thrust Drilling Project. Earth, Planets and Space, http://doi.org/10.1186/s40623-015-0186-2
    [Google Scholar]
  98. Hamaker, S. & Harris, R.
    2007. Fault-related ground-water compartmentalization in the East Tintic Mining District, Utah. In: Willis, G.C., Hylland, M.D., Clark, D.L. & Chidsey, T.C.Jr. (eds) Central Utah -- Diverse Geology of A Dynamic Landscape. Utah Geological Association Publication, 36, 405–423.
    [Google Scholar]
  99. Hammond, K.J. & Evans, J.P.
    2003. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada. Journal of Structural Geology, 25, 717–736.
    [Google Scholar]
  100. Hao, F., Zhu, W., Zou, H. & Li, P.
    2015. Factors controlling petroleum accumulation and leakage in overpressured reservoirs. AAPG Bulletin, 99, 831–858.
    [Google Scholar]
  101. Hausegger, S., Kurz, W., Rabitsch, R., Kiechl, E. & Brosch, F.-J.
    2010. Analysis of the internal structure of a carbonate damage zone: implications for the mechanisms of fault breccia formation and fluid flow. Journal of Structural Geology, 32, 1349–1362.
    [Google Scholar]
  102. Healy, D., Michie, E., Haines, T., Neilson, J., Alsop, I., Timms, N. & Wilson, M.
    2012. Outcrop-scale variations in petrophysical properties of faulted carbonates: exploring the relative influence of lithology, displacement and juxtaposition. Search and Discovery Article #120061, presented at the AAPG Hedberg Conference, ‘Fundamental Controls on Flow in Carbonates’.
    [Google Scholar]
  103. Heermance, R., Shipton, Z.K. & Evans, J.P.
    2003. Fault structure control on fault lip and ground motion during the 1999 rupture of the Chelungpu fault, Taiwan. Bulletin of the Seismological Society of America, 93, 1034–1050.
    [Google Scholar]
  104. Hildenbrand, T.G., Davidson, J.G., Ponti, D.J. & Langenheim, V.E.
    2001. Implications for the formation of the Hollywood Basin from gravity interpretations of the northern Los Angeles Basin, California. US Geological Survey, Open File Report 2001–394.
    [Google Scholar]
  105. Hobbs, S.W., Griggs, A.B., Wallace, R.E. & Campbell, A.B.
    1965. Geology of the Coeur d'Alene District, Shoshone County, Idaho. US Geological Survey Professional Paper, 478 .
    [Google Scholar]
  106. Honda, N., Abouelenein, M.K.M., Loader, C. & Akbar, M.
    1996. Fault interpretation and fracture morphology: A case study of Jurassic carbonate reservoir in El-Bunduq oil field, offshore Abu Dhabi and Qatar. Paper SPE 36202, presented at the Abu Dhabi International Petroleum Exhibition and Conference.
    [Google Scholar]
  107. Hough, S.E., Ben-Zion, Y. & Leary, P.
    1994. Fault-zone waves observed at the Southern Joshua Tree Earthquake Zone. Bulletin of the Seismological Society of America, 84, 761–767.
    [Google Scholar]
  108. House, W.M. & Gray, D.R.
    1982. Cataclasites along the Saltville thrust, U.S.A. and their implications for thrust-sheet emplacement. Journal of Structural Geology, 4, 257–269.
    [Google Scholar]
  109. Hull, J.
    1988. Thickness–displacement relationships for deformation zones. Journal of Structural Geology, 10, 431–435.
    [Google Scholar]
  110. Hurley, N.F. & Budros, R.
    1990. Albion-scipio and stoney point fields-U.S.A., Michigan Basin. In: Beaumont, E.A. & Foster, N.H. (eds) Stratigraphic Traps I: AAPG Treatise of Petroleum Geology. Atlas of Oil and Gas Fields. AAPG, 1–37.
    [Google Scholar]
  111. Hussain, A.
    1993. Dukhan Field (Onshore Qatar) Uwainat Reservoir Optimum Development Scheme. Paper SPE-25530-MS, http://doi.org/10.2118/25530-MS
  112. Jeanne, P. Guglielmi, Y. & Cappa, F.
    2012. Multiscale seismic signature of a small fault zone in a carbonate reservoir: Relationships between Vp imaging, fault zone architecture, and cohesion. Tectonophysics, 554–557, 185–201.
    [Google Scholar]
  113. Jin, G.
    2001. The origin of extensional drag folds, distribution of strain, and correlation to fractures with application to the Gilbertown field, Alabama. PhD Thesis, University of Alabama, UMI: 3038906.
    [Google Scholar]
  114. Johnson, A.M., Fleming, R.W. & Cruikshank, K.M.
    1994. Shear zones formed along long, straight traces of fault zones during the 28 June 1992 Landers, California, earthquake. Bulletin of the Seismological Society of America, 84, 499–510.
    [Google Scholar]
  115. Johnson, C.A., Sattar, M.A., Rosel, R., Al-Shekaili, F., Al-Zaabi, N. & Gombos, A.
    2002. Structure and regional context of onshore field in Abu Dhabi, UAE. Paper SPE 78488, presented at the 10th Abu Dhabi Internal Petroleum Exhibition and Conference, 13–16 October 2002.
    [Google Scholar]
  116. Jolley, S.J., Dijk, H., Lamens, J.H., Fisher, Q.J., Manzocchi, T. & Eikmans, H.
    2007. Faulting and fault sealing in production simulation models: Brent Province, northern North Sea. Petroleum Geoscience, 13, 321–340, http://doi.org/10.1144/1354-079306-733 .
    [Google Scholar]
  117. Kenworthy, S. & Hagemann, S.G.
    2007. Fault and vein relationships in a reverse fault system at the Centenary orebody (Darlot gold deposit), Western Australia: implications for gold mineralisation. Journal of Structural Geology, 29, 712–735.
    [Google Scholar]
  118. Kirschner, D.L. & Kennedy, L.A.
    2001. Limited syntectonic fluid flow in carbonate-hosted thrust faults of the Front Ranges, Canadian Rockies, inferred from stable isotope data and structures. Journal of Geophysical Research, 106, http://doi.org/10.1029/2000JB900414
    [Google Scholar]
  119. Kitamura, M., Mukoyoshi, H. & Hirose, T.
    2014. The relationship between displacement and thickness of faults in the Shimanto accretionary complex. Journal of the Geological Society of Japan, 120, 11–21.
    [Google Scholar]
  120. Knipe, R.J., Fisher, Q.J. et al.
    1997. Fault seal analysis, successful methodologies, application and future directions. In: Moller-Pederson, P. & Koestler, A.G. (eds) Hydrocarbon Seals’ -- Importance for Exploration and Production. Norwegian Petroleum Society (NPF), Special Publications, 7, 15–37.
    [Google Scholar]
  121. Kocharyan, G.G., Kishkina, S.B. & Ostapchuk, A.A.
    2011. Seismogenic width of a fault zone. Part 1. Doklady Earth Sciences, 437, 412–415.
    [Google Scholar]
  122. Koestler, A.G. & Reksten, K.
    1995. Fracture-network 3D characterization in a deformed chalk reservoir analogue--the Lagerdorf case. Paper SPE 28728, presented at the 1994 SPE International Petroleum Conference and Exhibition, 10–13 October 1995, Veracruz, Mexico.
    [Google Scholar]
  123. Kolichko, A.V. & Fil, V.N.
    1981. Engineering-geologic conditions of constructing the Rogun dam. Hydrotechnical Construction, 15, 577–582.
    [Google Scholar]
  124. Konon, A.
    2004. Successive episodes of normal faulting and fracturing resulting from progressive extension during the uplift of the Holy Cross Mountains, Poland. Journal of Structural Geology, 26, 419–433.
    [Google Scholar]
  125. Korneva, I., Cilona, A., Tondi, E., Agosta, F. & Giorgioni, M.
    2014a. Characterisation of the permeability anisotropy of Cretaceous platform carbonates by using 3D fracture modeling: the case study of Agri Valley fault zones (southern Italy). Italian Journal of Geosciences, 134, 396–408.
    [Google Scholar]
  126. Korneva, I., Tondi, E., Agosta, F., Rustichelli, A., Spina, V., Bitonte, R. & Di Cuia, R.
    2014b. Structural properties of fractured and faulted Cretaceous platform carbonates, Murge Plateay (southern Italy). Marine and Petroleum Geology, 57, 312–326.
    [Google Scholar]
  127. Kostakioti, A., Xypolias, P., Kokkalas, S. & Doutsos, T.
    2004. Quantitative analysis of deformation along the fault damage zone of the Klimatia thrust (NW Greece, Ionian Zone). Bulletin of The Geological Society of Greece, 36, 1643–1651.
    [Google Scholar]
  128. Koukouvelas, I.K. & Papoulis, D.
    2009. Fluid involvement in the active Helike normal fault, Gulf of Corinth, Greece. Journal of Structural Geology, 31, 237–250.
    [Google Scholar]
  129. Lehnar, F.K. & Pilaar, W.F.
    1997. The emplacement of clay smears in syn-sedimentary normal faults: inferences from field observations near Frechen, Germany. In: Møller-Pedersen, P. & Koestler, A.G. (eds) Hydrocarbon Seals: Importance for Exploration and Production. Norwegian Petroleum Society, Special Publication, 7, 39–50.
    [Google Scholar]
  130. Lena, G., Barchi, M.R., Alvarez, W., Felici, F. & Minelli, G.
    2015. Mesostructural analysis of S–C fabrics in a shallow shear zone of the Umbria–Marche Apennines (Central Italy). In: Faulkner, D.R., Mariani, E. & Mecklenburgh, J. (eds) Rock Deformation From Field, Experiments and Theory: A Volume in Honour of Ernie Rutter . Geological Society, London, Special Publications, 409, 149–166, http://doi.org/10.1144/SP409.10
    [Google Scholar]
  131. Li, Y.-G. & Leary, P.C.
    1990. Fault zone trapped seismic waves. Bulletin of the Seismological Society of America, 80, 1245–1271.
    [Google Scholar]
  132. Li, Y.-G., Aki, K., Adams, D. Hasemi, A. & Lee, W.H.K.
    1994. Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. Journal of Geophysical Research, 99, 11705–11722.
    [Google Scholar]
  133. Li, Y.-G., Ellsworth, W.L., Thurber, C.H., Malin, P.E. & Aki, K.
    1997. Fault-zone guided waves from explosions in the San Andreas Fault at Parkfield and Cienega Valley, California. Bulletin of the Seismological Society of America, 87, 210–221.
    [Google Scholar]
  134. Li, Y.-G., Vidale, J.E., Aki, K., Xu, F. & Burdette, T.
    1998. Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California. Earthquake, Science, 279, 217–219.
    [Google Scholar]
  135. Lin, A. & Yamashita, K.
    2013. Spatial variations in damage zone width along strike-slip faults: an example from active faults in southwest Japan. Journal of Structural Geology, 57, 1–15.
    [Google Scholar]
  136. Lin, A., Maruyama, T. & Kobayashi, K.
    2007. Tectonic implications of damage zone-related fault-fracture networks revealed in drill core through the Nojima fault, Japan. Tectonophysics, 443, 161–173.
    [Google Scholar]
  137. Lindsay, N.G., Murphy, F.C., Walsh, J.J. & Watterson, J.
    1993. Outcrop studies of shale smears on fault surfaces. In: Flint, S.T. & Bryant, A.D. (eds) The Geological Modelling of Hydrocarbon Reservoirs and Outcrop. International Association of Sedimentologists, Oxford, Special Publication, 15, 113–123.
    [Google Scholar]
  138. Lockner, D.A., Tanaka, H., Ito, H., Ikeda, R., Omura, K. & Naka, H.
    2009. Geometry of the Nojima Fault at Nojima-Hirabayahi, Japan - I. A simple damage structure inferred from borehole core permeability. Pure and Applied Geophysics, 166, 1649–1667.
    [Google Scholar]
  139. Losh, S.
    1997. Stable isotope and modeling studies of fluid-rock interaction associated with the Snake Range and Mormon Peak detachment faults, Nevada. Geological Society of America Bulletin, 109, 300–323.
    [Google Scholar]
  140. Lund Snee, J.-E., Toy, V.G. & Gessner, K.
    2014. Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone. Journal of Structural Geology, 64, 79–98.
    [Google Scholar]
  141. Luther, A., Axen, G. & Selverstone, J.
    2013. Particle-size implications of low-angle normal fault breccias: Implications for slip mechanisms on weak faults. Journal of Structural Geology, 55, 50–61.
    [Google Scholar]
  142. Manatschal, G.
    1999. Fluid- and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland). Journal of Structural Geology, 21, 777–793.
    [Google Scholar]
  143. Mannino, I.
    2012. The evolution of fracturing process in fault damage-zones and its influence on the rock permeability: case study of the shallow marine and ramp carbonates of Central Apennines (Italy). PhD thesis, Università degli Studi ‘Roma Tre’.
    [Google Scholar]
  144. Manzocchi, T., Walsh, J.J., Nell, P. & Yielding, G.
    1999. Fault transmissibility multipliers for flow simulation models. Petroleum Geoscience, 5, 53–63, http://doi.org/10.1144/petgeo.5.1.53
    [Google Scholar]
  145. Martel, S.J.
    1990. Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. Journal of Structural Geology, 12, 869–882.
    [Google Scholar]
  146. Matonti, C., Lamarche, J., Guglielmi, Y. & Marie, L.
    2012. Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: example form the Castellas fault (SE France). Journal of Structural Geology, 39, 103–121.
    [Google Scholar]
  147. Mazzoli, S., Invernizzi, C., Marchegiani, L., Mattioni, L. & Cello, G.
    2004. Brittle–ductile shear zone evolution and fault initiation in limestones, Monte Cugone (Lucania), southern Apennines, Italy. In: Alsop, G.I., Holdsworth, R.E., McCaffrey, K.J.W. & Hand, M. (eds) Flow Processes in Faults and Shear Zones . Geological Society, London, Special Publications, 224, 353–373, http://doi.org/10.1144/GSL.SP.2004.224.01.22
    [Google Scholar]
  148. McMechan, M.E.
    2000. Walker Creek fault zone, central Rocky Mountains, British Columbia--southern continuation of the Northern Rocky Mountain Trench fault zone. Canadian Journal of Earth Sciences, 37, 1259–1273.
    [Google Scholar]
  149. Meddaugh, W.S., Barge, D., Todd, W.W. & Griest, S.
    2007. The Jurassic-age Marrat Reservoir at Humma Field, Partitioned Neutral Zone (PNZ) Saudi Arabia and Kuwait—Utilization of a probabilistic, two stage design of experiments workflow for reservoir characterization and management. IPTC 11219, presented at the International Petroleum Technology Conference, 4–6 December 2007 Dubai, U.A.E.
    [Google Scholar]
  150. Meneghini, F. & Moore, J.C.
    2007. Deformation and hydrofracture in a subduction thrust at seismogenic depths: The Rodeo Cove thrust zone, Marin Headlands, California. Geological Society of America Bulletin, 119, 174–183.
    [Google Scholar]
  151. Micarelli, L., Moretti, I. & Daniel, J.M.
    2003. Structural properties of rift-related normal faults: the case study of the Gulf of Corinth, Greece. Journal of Geodynamics, 36, 275–303.
    [Google Scholar]
  152. Micarelli, L., Benedicto, A. & Wibberley, C.A.J.
    2006a. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28, 1214–1227.
    [Google Scholar]
  153. Micarelli, L., Moretti, I., Jaubert, M. & Moulouel, H.
    2006b. Fracture analysis in the south-western Corinth rift (Greece) and implications on fault hydraulic behavior. Tectonophysics, 426, 31–59.
    [Google Scholar]
  154. Michie, E.A.H., Haines, T.J., Healy, D., Neilson, J., Alsop, G.I. & Timms, N.E.
    2012. Fracture patterns in carbonate fault zones and their influence on petrophysical properties. Paper P08, presented at the EAGE 3rd Conference on Fault and Top Seals.
    [Google Scholar]
  155. Michie, E.A.H., Haines, T.J., Healy, D., Neilson, J.E., Timms, N.E. & Wibberley, C.A.J.
    2014. Influence of carbonate facies on fault zone architecture. Journal of Structural Geology, 65, 82–99.
    [Google Scholar]
  156. Mitchell, T.M. & Faulkner, D.R.
    2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31, 802–816.
    [Google Scholar]
  157. Mitchell, T.M., Ben-Zion, Y. & Shimamoto, T.
    2011. Pulverized fault rocks and damage zone asymmetry along the Arima-Takatsuki Tectonic Line, Japan. Earth and Planetary Science Letters, 308, 284–297.
    [Google Scholar]
  158. Mitra, G.
    1992. Deformation of granitic basement rocks along fault zones at shallow to intermediate crustal levels. In: Mitra, S. & Fisher, G.W. (eds) Structural Geology of Fold and Thrust Belts. Johns Hopkins University Press, Baltimore, MD, 123–144.
    [Google Scholar]
  159. Mizuno, T., Kuwahara, Y., Ito, H. & Nishigami, K.
    2008. Spatial variations in fault zone structure along the Nojima Fault, Central Japan, as inferred from borehole observations of fault-zone trapped waves. Bulletin of the Seismological Society of America, 98, 558–570.
    [Google Scholar]
  160. Montgomery, S.L.
    1998. Thirtyone Formation, Permian Basin, Texas: Structural and Lithologic Heterogeneity in a Lower Devonian Chert Reservoir. AAPG Bulletin, 82, 1–24.
    [Google Scholar]
  161. Moore, J.C. & Lundberg, N.
    1986. Tectonic overview of deep sea drilling project transects of forearcs. In: Moore, J.C. (eds) Structural Fabrics in Deep Sea Drilling Project Cores from Forearcs. GSA Memoirs, 166, 1–12.
    [Google Scholar]
  162. Moretti, I., Delhomme, J.P., Cornet, F., Bernard, P., Schmidt-Hattenberger, C. & Borm, G.
    2002. The Corinth Rift Laboratory: monitoring of active faults. First Break, 20, 91–97.
    [Google Scholar]
  163. Myers, R.
    1999. Structure and Hydraulics of Brittle Faults in Sandstone. PhD Thesis, Stanford University.
    [Google Scholar]
  164. Naruk, S.J., Brandenburg, J.P., Solum, J.G., Wolf, D.E., Origo, P. & Kirschner, D.L.
    2012. Effective Stress Constraints on Vertical Flow in Fault Zones: Learnings from Natural CO2 Reservoirs. Paper B09, presented at the 3rd EAGE International Conference on Fault and Top Seals – From Characterization to Modelling, 1–3 October 2012 in Montpellier, France.
    [Google Scholar]
  165. Newman, J. & Mitra, G.
    1994. Fluid-influenced deformation and recrystallization of dolomite at low temperatures along a fault zone, Mountain City window, Tennessee. Geological Society of America Bulletin, 106, 1267–1280.
    [Google Scholar]
  166. Novellino, R., Prosser, G., Spiess, R., Viti, C., Agosta, F., Tavarnelli, E. & Bucci, F.
    2015. Dynamic weakening along incipient low-angle normal faults in pelagic limestones (Southern Apennines, Italy). Journal of the Geological Society, London, 172, 283–286, http://doi.org/10.1144/jgs2014-091 .
    [Google Scholar]
  167. Peacock, D.C.P., Fisher, Q.J., Willemse, E.J.M. & Aydin, A.
    1998. The relationship between faults and pressure solution seams in carbonate rocks and the implications for fluid flow. In: Jones, G., Fisher, Q.J. & Knipe, R.J. (eds) Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs . Geological Society, London, Special Publication, 147, 105–115, http://doi.org/10.1144/GSL.SP.1998.147.01.07 .
    [Google Scholar]
  168. Pili, E., Poitrasson, F. & Gratier, J.-P.
    2002. Carbon-oxygen isotope and trace element constraints on how fluids percolate faulted limestones from the San Andreas Fault System: partitioning of fluid sources and pathways. Chemical Geology, 190, 231–250.
    [Google Scholar]
  169. Price, R.A.
    2001. An evaluation of models for the kinematic evolution of thrust and fold belts: structural analysis of transverse fault zone in the Front Ranges of the Canadian Rockies north of Banff, Alberta. Journal of Structural Geology, 23, 1079–1088.
    [Google Scholar]
  170. Ramsey, D.W. & Onasch, C.M.
    1999. Fluid migration in a cratonic setting: the fluid histories of two fault zones in the eastern midcontinent. Tectonophysics, 305, 307–323.
    [Google Scholar]
  171. Ran, G., Eyal, S., Yoseph, Y., Amir, S. & Noam, W.
    2014. The permeability of fault zones: a case study of the Dead Sea rift (Middle East). Hydrogeology Journal, 22, 425–440.
    [Google Scholar]
  172. Reaser, D.F. & Collins, E.W.
    1988. Style of faults and associated fractures in Austin Chalk, northern extension of the Balcones Fault Zone, Central Texas. Gulf Coast Association of Geological Societies Transactions, 38, 267–276.
    [Google Scholar]
  173. Reyer, D.
    2013. Outcrop analogue studies of rocks from the Northwest German Basin for geothermal exploration and exploitation: fault zone structure, heterogeneous rock properties, and application to reservoir conditions. Dissertation, ‘Doctor rerum naturalium’, Georg-August-Universitat Gottingen.
    [Google Scholar]
  174. Reyer, D., Bauer, J.F. & Philipp, S.L.
    2012. Fracture systems in normal fault zones crosscutting sedimentary rock, Northwest German Basin. Journal of Structural Geology, 45, 38–51.
    [Google Scholar]
  175. Richards, D.P., Williams, A.P. & Perry, D.L.
    2010b. Thoughts on fault zone characterization for tunneling. Paper ARMA 10–386, presented at the 44th US Rock Mechanics Symposium and 5th U.S.–Canada Rock Mechanics Symposium 27–30 June 2010, Salt Lake City, Utah, USA.
    [Google Scholar]
  176. Richards, K., Revil, A., Jardani, A., Henderson, F., Batzle, M. & Haas, A.
    2010a. Pattern of shallow ground water flow at Mount Princeton Hot Springs, Colorado, using geoelectrical methods. Journal of Volcanology and Geothermal Research, 198, 217–232.
    [Google Scholar]
  177. Roberts, G.P.
    1994. Displacement localization and palaeo-seismicity of the Rencurel Thrust Zone, French Sub-Alpine Chains. Journal of Structural Geology, 16, 633–646.
    [Google Scholar]
  178. Roberts, G. & Stewart, I.
    1994. Uplift, deformation and fluid involvement within an active normal fault zone in the Gulf of Corinth, Greece. Journal of the Geological Society, London, 151, 531–541, http://doi.org/10.1144/gsjgs.151.3.0531
    [Google Scholar]
  179. Sagi, D.A.
    2013. Characterisation of the 2D and 3D density and connectivity attributes of fracture systems in carbonate reservoir analogues: implications for fluid flow. PhD Thesis, Durham University.
    [Google Scholar]
  180. Salvini, F., Billi, A. & Wise, D.U.
    1999. Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy. Journal of Structural Geology, 21, 1731–1749.
    [Google Scholar]
  181. Savage, H. & Brodsky, E.E.
    2011. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. Journal of Geophysical Research, 116, http://doi.org/10.1029/2010JB007665
    [Google Scholar]
  182. Schröckenfuchs, T., Bauer, H., Grasemann, B. & Decker, K.
    2015. Rock pulverization and localization of a strike-slip fault zone in dolomite rocks (Salzach–Ennstal–Mariazell–Puchberg fault, Austria). Journal of Structural Geology, 78, 67–85.
    [Google Scholar]
  183. Schulz, S.E. & Evans, J.P.
    1998. Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid-rock interaction, and fault morphology. Tectonophysics, 295, 223–244.
    [Google Scholar]
  184. Segall, P. & Pollard, D.D.
    1983. Nucleation and growth of strike slip faults in granite. Journal of Geophysical Research, 88, 555–568.
    [Google Scholar]
  185. Shankar, V.V., Trabelsi, A.M.S. & Beg, M.A.
    2003. Predicting the occurrence of bulk bitumen in uncored wells: a core-log calibration method, Uwainat Reservoir, Dukhan field, Qatar. GeoArabia, 8, 625–638.
    [Google Scholar]
  186. Shigematsu, N., Fujimoto, K., Tanaka, N., Furuya, N., Mori, H. & Wallis, S.
    2012. Internal structure of the Median Tectonic Line fault zone, SW Japan, revealed by borehole analysis. Tectonophysics, 532–535, 103–118.
    [Google Scholar]
  187. Sibson, R.H.
    1990. Conditions for fault-valve behavior. In: Knipe, R.J. & Rutter, E.H. (eds) Deformation Mechanisms, Rheology and Tectonics . Geological Society, London, Special Publications, 54, 15–28, http://doi.org/10.1144/GSL.SP.1990.054.01.02
    [Google Scholar]
  188. Siman-Tov, S., Aharanov, E., Sagy, A. & Emmanuel, S.
    2013. Nanograins form carbonate fault mirrors. Geology, 41, 703–706.
    [Google Scholar]
  189. Smith, S.A.F., Collettini, C. & Holdsworth, R.E.
    2008. Recognizing the seismic cycle along ancient faults: CO2-induced fluidization of breccias in the footwall of a sealing low-angle normal fault. Journal of Structural Geology, 30, 1034–1046.
    [Google Scholar]
  190. Soden, A.M.
    2008. The initiation and evolution of ignimbrite faults, Gran Canaria, Spain. PhD Thesis, University of Glasgow.
    [Google Scholar]
  191. Solum, J.G.
    2015. Static and dynamic fault seal potential in carbonates. Paper Wo FTS 054th, presented at the EAGE Fault and Top Seals Conference 20–24 September 2015 in Alméria, Spain.
    [Google Scholar]
  192. Solum, J.G., Hickman, S.H., Lockner, D.A., Moore, D.E., van der Pluijm, B.A., Schleicher, A.M. & Evans, J.P.
    2006. Mineralogical characterization of protolith and fault rocks from the SAFOD Main Hole. Geophysical Research Letters, 33, L21314, 10.1029/2006GL027285.
    [Google Scholar]
  193. Sperrevik, S., Gillespie, P.A., Fisher, Q.J., Halverson, T. & Knipe, R.J.
    2002. Empirical estimation of fault rock properties. In: Koestler, A.G. & Hunsdale, R. (eds) Hydrocarbon Seal Quantification. NPF Special Publication 11 , Elsevier, Amsterdam, 109–125.
    [Google Scholar]
  194. Stenger, B.A., Pham, T.R., Al-Sahhaf, A.A. & Al-Muhaish, A.S.
    2001. Assessing the oil water contact in Haradh Arab-D. Paper SPE 71339, presented at the SPE Annual Technical Conference and Exhibition, 30 September – 3 October 2001, New Orleans, Louisiana, USA.
    [Google Scholar]
  195. Stewart, I.S. & Hancock, P.L.
    1991. Scales of structural heterogeneity within neotectonic normal fault zones in the Aegean region. Journal of Structural Geology, 13, 191–204.
    [Google Scholar]
  196. Sutherland, R., Toy, V.G. et al.
    2012. Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand. Geology, 40, 1143–1146.
    [Google Scholar]
  197. Teixell, A., Durney, D.W. & Arboleya, M.-L.
    2000. Stress and fluid control on decollement within competent limestone. Journal of Structural Geology, 22, 349–371.
    [Google Scholar]
  198. Tesei, T., Collettini, C., Viti, C. & Barchi, M.R.
    2013. Fault architecture and deformation mechanisms in exhumed analogues of seismogenic carbonate-bearing thrusts. Journal of Structural Geology, 55, 167–181.
    [Google Scholar]
  199. Thomasen, J.B. & Jacobsen, N.L.
    1994. Dipping fluid contacts in the Kraka Field, Danish North Sea. Paper SPE 28435, presented at the SPE Annual Conference and Exhibition, 25–28 September New Orleans, Louisiana, USA.
    [Google Scholar]
  200. Tillman, J.E. & Barnes, H.L.
    1983. Deciphering fracturing and fluid migration histories in northern Appalachian Basin. AAPG Bulletin, 67, 692–705.
    [Google Scholar]
  201. Titus, S.J., DeMets, C. & Tikoff, B.
    2006. Thirty-five-year creep rates for the creeping segment of the San Andreas Fault and the effects of the 2004 Parkfield Earthquake: Constrains from alignment arrays, continuous global positioning system, and creepmeters. Bulletin of the Seismological Society of America, 96, S250–S268.
    [Google Scholar]
  202. Tondi, E., Antonellini, M., Aydin, A., Marchegiani, L. & Cello, G.
    2006. The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy. Journal of Structural Geology, 28, 376–391.
    [Google Scholar]
  203. Tondi, E., Cilona, A., Agosta, F., Aydin, A., Rustichelli, A., Renda, P. & Giunta, G.
    2012. Growth processes, dimensional parameters and scaling relationships of two conjugate sets of compactive shear bands in porous carbonate grainstones, Favignana Island, Italy. Journal of Structural Geology, 37, 53–64.
    [Google Scholar]
  204. Tondi, E., Rustichelli, A. et al.
    2016. Hydraulic properties of fault zones in porous carbonates, examples from central and southern Italy. Italian Journal of Geosciences, 135, 68–79.
    [Google Scholar]
  205. Torabi, A. & Berg, S.S.
    2011. Scaling of fault attributes: A review. Marine and Petroleum Geology, 28, 1444–1460.
    [Google Scholar]
  206. Treiman, J.A.
    1992. Eureka Peak and related faults, Joshua Tree South and Yucca Valley South quadrangles, San Bernardino and Riverside counties, California. California Division of Mines and Geology Fault Evaluation Report, FER-230.
    [Google Scholar]
  207. Tsutsumi, A., Nishino, S. et al.
    2004. Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan. Tectonophysics, 379, 93–108.
    [Google Scholar]
  208. Uehara, S.-I. & Shimamoto, T.
    2004. Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure throughout the earthquake cycle. Tectonophysics, 378, 183–195.
    [Google Scholar]
  209. Valoroso, L., Chiaraluce, L. & Collettini, C.
    2014. Earthquakes and fault zone structure. Geology, 42, 343–346.
    [Google Scholar]
  210. Vejbaek, O.V., Bech, N. et al.
    2015. Modeling unequilibrated oil saturations in a chalk reservoir, the South Arne Field case. Paper SPE-174085-PA.SPE Reservoir Evaluation & Engineering, 18, 133–148.
    [Google Scholar]
  211. Vidale, J.E. & Li, Y.-G.
    2003. Damage to the shallow Landers fault from the nearby Hector Mine earthquake. Nature, 421, 524–526.
    [Google Scholar]
  212. Wakabayashi, J.
    1999. Distribution of displacement on and evolution of a young transform fault system: the northern San Andreas fault system, California. Tectonics, 18, 1245–1274.
    [Google Scholar]
  213. Wallace, R.W. & Morris, H.T.
    1986. Characteristics of faults and shear zones in deep mines. Pure and Applied Geophysics, 124, 107–125.
    [Google Scholar]
  214. Whitaker, A.E., Kabir, C.S. & Narr, W.
    2007. An integrated geological and engineering assessment of fracture flow potential in a Middle-East carbonate Reservoir. Paper SPE 106994, presented at the SPE Europe/EAGE Annual Conference and Exhibition, 11–14 June 2007, London, UK.
    [Google Scholar]
  215. Wibberley, C.A.J.
    2005. Initiation of basement thrust detachments by fault-zone reaction weakening. In: Bruhn, D. & Burlini, L. (eds) High-Strain Zones: Structure and Physical Properties . Geological Society, London, Special Publications, 245, 347–372, http://doi.org/10.1144/GSL.SP.2005.245.01.17
    [Google Scholar]
  216. Wibberley, C.A.J. & Shimamoto, T.
    2003. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25, 59–78.
    [Google Scholar]
  217. Wibberley, C.A.J., Yielding, G. & Di toro, G.
    2008. Recent advances in the understanding of fault zone internal structure: a review. In: Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E. & Collettini, C. (eds) The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties . The Geological Society, London, 299, 5–33, http://doi.org/10.1144/SP299.2
    [Google Scholar]
  218. Wibberley, C.A.J., Gonzales, J. & Billon, O.
    2015. Changes in reservoir fault seal behaviour through time, offshore Congo. Paper Wo FTS 12, presented at the 4th EAGE Fault and Top Seals Conference, 20–24 September 2015 Alméria, Spain.
    [Google Scholar]
  219. Wilkins, S.J. & Naruk, S.J.
    2007. Quantitative analysis of slip-induced dilation with application to fault seal. AAPG Bulletin, 91, 97–113.
    [Google Scholar]
  220. Wilson, J.E., Chester, J.S. & Chester, F.M.
    2003. Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California. Journal of Structural Geology, 25, 1855–1873.
    [Google Scholar]
  221. Wilson, P., Gawthorpe, R.L., Hodgetts, D., Rarity, F. & Sharp, I.R.
    2009. Geometry and architecture of faults in a syn-rift normal fault array: the Nukhul half-graben, Suez rift, Egypt. Journal of Structural Geology, 31, 759–775.
    [Google Scholar]
  222. Wojtal, S. & Mitra, G.
    1986. Strain hardening and strain softening in fault zones from foreland thrusts. Geological Society of America Bulletin, 97, 674–687.
    [Google Scholar]
  223. Woodcock, N.H., Miller, A.V.M. & Woodhouse, C.D.
    2014. Chaotic breccia zones on the Pembroke Peninsula, south Wales: Evidence for collapse into voids along dilatational faults. Journal of Structural Geology, 69, 91–107.
    [Google Scholar]
  224. Yielding, G., Freeman, B. & Needham, D.T.
    1997. Quantitative fault seal prediction. AAPG Bulletin, 81, 897–917.
    [Google Scholar]
  225. Yielding, G., Bretan, P. & Freeman, B.
    2010. Fault seal calibration: a brief review. In: Jolley, S.J., Fisher, Q.J., Ainsworth, R.B., Vrolijk, P.J. & Delisle, S.J. (eds) Reservoir Compartmentalization . Geological Society, London, Special Publications, 347, 243–255, http://doi.org/10.1144/SP347.14 .
    [Google Scholar]
  226. Zachariasen, J. & Sieh, K.
    1995. The transfer of slip between two en echelon strike-slip faults: A case study from the 1992 Landers earthquake, southern California. Journal of Geophysical Research, 100, 15281–15301.
    [Google Scholar]
  227. Zahm, C.K., Zahm, L.C. & Bellian, J.A.
    2010. Integrated fracture prediction using sequence stratigraphy within a carbonate damage zone, Texas, USA. Journal of Structural Geology, 32, 1363–1374.
    [Google Scholar]
  228. Zambrano, M., Tondi, E., Korneva, I., Panza, E., Agosta, F., Janiseck, J.M. & Giorgioni, M.
    2016. Fracture properties analysis and discrete fracture network modelling of faulted tight limestones, Murge Plateau, Italy. Italian Journal of Geosciences, 135, 55–67.
    [Google Scholar]
  229. Zawisza, L.
    2004. Hydrodynamic conditions of hydrocarbon accumulation exemplified by the Pomorsko and Czerwiensk oil fields in the Polish Lowland. Paper SPE 90586, presented at the SPE Annual Technical Conference and Exhibition, 26–29 September 2004, Houston, Texas, USA.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-044
Loading
/content/journals/10.1144/petgeo2016-044
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error