1887
Volume 23, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

Compressed air energy storage (CAES) in porous formations is considered as one option for large-scale energy storage to compensate for fluctuations from renewable energy production. To analyse the feasibility of such a CAES application and the deliverability of an underground porous formation, a hypothetical CAES scenario using an anticline structure is investigated. Two daily extraction cycles of 6 h each are assumed, complementing high solar energy production around noon. A gas turbine producing 321 MW of power with a minimum inlet pressure of 43 bar at 417 kg s air is assumed. Simulation results show that using six wells the 20 m-thick storage formation with a permeability of 1000 mD can support the required 6 h continuous power output of 321 MW, even reaching 8 h maximally. For the first 30 min, maximum power output is higher, at 458 MW, continuously dropping afterwards. A sensitivity analysis shows that the number of wells required does not linearly decrease with increasing permeability of the storage formation due to well inference during air extraction. For each additional well, the continuous power output increases by 4.8 h and the maximum power output within the first 30 min by 76 MW.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-049
2017-04-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/petgeo/23/3/petgeo2016-049.html?itemId=/content/journals/10.1144/petgeo2016-049&mimeType=html&fmt=ahah

References

  1. al Hagrey, S.A., Schäfer, D., Köhn, D., Wiegers, C.E., Chung, D., Dahmke, A. & Rabbel, W.
    2016. Monitoring gas leakages simulated in a near surface aquifer of the Ellerbek paleo-channel. Environmental Earth Sciences, 75, 1083, https://doi.org/10.1007/s12665-016-5784-1
    [Google Scholar]
  2. André, L., Azaroual, M., Bernstone, C. & Wittek, A.
    2015. Modeling the geochemical impact of an injection of CO2 and associated reactive impurities (SO2 and O2) into a saline reservoir. Transport in Porous Media, 108, 185–205, https://doi.org/10.1007/s11242-014-0359-7
    [Google Scholar]
  3. ANR Storage Company
    . 1990. Compressed-Air Energy Storage: Pittsfield Aquifer Field Test; Test Data: Engineering Analysis and Evaluation. ANR Storage Company , Detroit, MI, USA.
    [Google Scholar]
  4. Baldschuhn, R., Binot, F., Fleig, S. & Kockel, F.
    2001. Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor [Tectonic Atlas of Northwest Germany and the German North Sea Sector]. Schweizerbart Science Publishers, Stuttgart, Germany.
    [Google Scholar]
  5. Bary, A., Crotogino, F.
    2002. Storing natural gas underground. Oilfield Review, 14, 16.
    [Google Scholar]
  6. Bauer, S., Beyer, C.
    2013. Impacts of the use of the geological subsurface for energy storage: An investigation concept. Environmental Earth Sciences, 70, 3935–3943, https://doi.org/10.1007/s12665-013-2883-0
    [Google Scholar]
  7. Benisch, K. & Bauer, S.
    2013. Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. International Journal of Greenhouse Gas Control, 19, 220–233, https://doi.org/10.1016/j.ijggc.2013.09.002
    [Google Scholar]
  8. Benisch, K., Köhn, D., al Hagrey, S., Rabbel, W. & Bauer, S.
    2015. A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site. Environmental Earth Sciences, 73, 3077–3094, https://doi.org/10.1007/s12665-014-3603-0
    [Google Scholar]
  9. Berta, M., Dethlefsen, F., Ebert, M., Gundske, K. & Dahmke, A.
    2016. Surface passivation model explains pyrite oxidation kinetics in column experiments with up to 11 bars p(O2). Environmental Earth Sciences, 75, 1175, https://doi.org/10.1007/s12665-016-5985-7
    [Google Scholar]
  10. Beyer, C., Li, D., De Lucia, M., Kühn, M. & Bauer, S.
    2012. Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environmental Earth Sciences, 67, 573–588, https://doi.org/10.1007/s12665-012-1684-1
    [Google Scholar]
  11. BMWi
    . 2015. Making a Success of the Energy Transition. Federal Ministry for Economic Affairs and Energy (BMWi), Berlin, Germany.
    [Google Scholar]
  12. Boockmeyer, A. & Bauer, S.
    2016. Efficient simulation of multiple borehole heat exchanger storage sites. Environmental Earth Sciences, 75, 1021, https://doi.org/10.1007/s12665-016-5773-4
    [Google Scholar]
  13. Brooks, R. & Corey, A.
    1964. Hydraulic Properties of Porous media. Hydrology Papers, Colorado State University, 3.
    [Google Scholar]
  14. Bundesnetzagentur
    . 2015. Monitoringbericht [Monitoring Report]. Bundesnetzagentur für Elektrizität, Gas Telekommunikation, Post und Eisenbahnen, Bonn, Germany.
    [Google Scholar]
  15. Çengel, Y.A. & Boles, M.A.
    2011. Thermodynamics: An Engineering Approach. 7th edn. McGraw-Hill, Boston, MA, USA.
    [Google Scholar]
  16. Crotogino, F., Mohmeyer, K.-U. & Scharf, R.
    2001. Huntorf CAES: More than 20 years of successful operation. In: Proceedings of the Solution Mining Research Institute (SMRI) Spring Meeting, Orlando, FL, USA, 15–18 April 2001. Solution Mining Research Institute (SMRI), Clarks Summit, PA, USA, 351–357.
    [Google Scholar]
  17. Delfs, J.-O., Nordbeck, J. & Bauer, S.
    2016. Upward brine migration resulting from pressure increases in a layered subsurface system. Environmental Earth Sciences, 75, 1441, https://doi.org/10.1007/s12665-016-6245-6
    [Google Scholar]
  18. Dethlefsen, F., Ebert, M. & Dahmke, A.
    2014. A geological database for parameterization in numerical modeling of subsurface storage in northern Germany. Environmental Earth Sciences, 71, 2227–2244, https://doi.org/10.1007/s12665-013-2627-1
    [Google Scholar]
  19. E.ON SE
    . 2016. Kraftwerk Huntorf, http://www.eon.com/de/ueber-uns/struktur/asset-finder/huntorf-power-station.html
  20. European Commission
    . 2015. Renewable Energy Progress Report. European Commission, Brussels, Belgium.
    [Google Scholar]
  21. Goudar, C. & Sonnad, J.
    2008. Comparison of the iterative approximations of the Colebrook–White equation. Hydrocarbon Processing, 87, (8), 79–80, 83.
    [Google Scholar]
  22. Hagoort, J.
    1988. Fundamentals of Gas Reservoir Engineering. Elsevier Science, Amsterdam, The Netherlands.
    [Google Scholar]
  23. Hartmann, N., Vöhringer, O., Kruck, C. & Eltrop, L.
    2012. Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations. Applied Energy, 93, 541–548, https://doi.org/10.1016/j.apenergy.2011.12.007
    [Google Scholar]
  24. Hese, F.
    2011. Geologische 3D-Modelle des Untergrundes Schleswig-Holsteins – ein Beitrag für Potenzialstudien zur Nutzung von tiefen salinen Aquiferen [Geological 3D models of the subsurface of Schleswig-Holstein – a contribution to studies focused on the utilisation potential of deep saline aquifers]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162, 389–404, https://doi.org/10.1127/1860-1804/2011/0162-0389
    [Google Scholar]
  25. 2012. 3D Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein [3D Modelling and Visualization of Subsurface Structures for the Use of the Subsurface Space of Schleswig-Holstein]. PhD thesis, University of Kiel, Kiel, Germany.
    [Google Scholar]
  26. Heusermann, S., Rolfs, O. & Schmidt, U.
    2003. Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model. Computers and Structures, 81, 629–638, https://doi.org/10.1016/S0045-7949(02)00415-7
    [Google Scholar]
  27. Hoffeins, H.
    1994. Huntorf Air Storage Gas Turbine Power Plant. Energy Supply. Brown Boveri & Cie Publications, D GK 90 202 E.
    [Google Scholar]
  28. Hoffeins, H. & Mohmeyer, K.-U.
    1986. Operating experience with the Huntorf air-storage gas turbine power station. Brown Boveri Review, 73, 297–305.
    [Google Scholar]
  29. Huminicki, D.M.C. & Rimstidt, J.D.
    2009. Iron oxyhydroxide coating of pyrite for acid mine drainage control. Applied Geochemistry, 24, 1626–1634, https://doi.org/10.1016/j.apgeochem.2009.04.032
    [Google Scholar]
  30. Hydrodynamics Group LCC
    . 2011. Iowa Stored Energy Plant Agency Compressed-Air Energy Storage Project: Final Project Report – Dallas Center Mt. Simon Structure CAES System Performance Analysis. Report Prepared for Iowa Storage Energy Plant Agency, Des Moines, IA, USA.
    [Google Scholar]
  31. Ibrahim, H., Younès, R., Ilinca, A., Dimitrova, M. & Perron, J.
    2010. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas. Applied Energy, 87, 1749–1762, https://doi.org/10.1016/j.apenergy.2009.10.017
    [Google Scholar]
  32. IPCC
    . 2014. Climate Change 2014: Mitigation of Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781107415416
    [Google Scholar]
  33. Kabuth, A., Dahmke, A.
    2017. Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environmental Earth Sciences, 76, 23, https://doi.org/10.1007/s12665-016-6319-5
    [Google Scholar]
  34. Kaye, G.W.C. & Laby, T.H.
    2016. 3.5. Critical constants and second virial coefficients of gases. In:Tables of Physical and Chemical Constants. 16th edn. Kaye & Laby Online, www.kayelaby.npl.co.uk
    [Google Scholar]
  35. Kepplinger, J., Crotogino, F., Donadei, S. & Wohlers, M.
    2011. Present trends in compressed air energy and hydrogen storage in Germany. In: Proceedings of the Solution Mining Research Institute (SMRI) Fall 2011 Technical Conference, York, United Kingdom, 3–4 October 2011. Solution Mining Research Institute (SMRI), Clarks Summit, PA, USA, 1–12.
    [Google Scholar]
  36. Khaledi, K., Mahmoudi, E., Datcheva, M., König, D. & Schanz, T.
    2016a. Sensitivity analysis and parameter identification of a time dependent constitutive model for rock salt. Journal of Computational and Applied Mathematics, 293, 128–138, https://doi.org/10.1016/j.cam.2015.03.049
    [Google Scholar]
  37. Khaledi, K., Mahmoudi, E., Datcheva, M. & Schanz, T.
    2016b. Analysis of compressed air storage caverns in rock salt considering thermo-mechanical cyclic loading. Environmental Earth Sciences, 75, 1149, https://doi.org/10.1007/s12665-016-5970-1
    [Google Scholar]
  38. Kim, Y.M., Shin, D.G. & Favrat, D.
    2011. Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis. Energy, 36, 6220–6233, https://doi.org/10.1016/j.energy.2011.07.040
    [Google Scholar]
  39. Kim, Y.M., Lee, J.H., Kim, S.J. & Favrat, D.
    2012. Potential and evolution of compressed air energy storage: Energy and exergy analyses. Entropy, 14, 1501–1521, https://doi.org/10.3390/e14081501
    [Google Scholar]
  40. Klaus, T., Vollmer, C., Werner, K., Lehmann, H. & Müschen, K.
    (eds). 2010. Energy Target 2050: 100% Renewable Electricity Supply. Umweltbundesamt, Dessau-Roßlau, Germany.
    [Google Scholar]
  41. Köhn, D., De Nil, D., al Hagrey, S.A. & Rabbel, W.
    2016. A combination of waveform inversion and reverse-time modelling for microseismic event characterization in complex salt structures. Environmental Earth Sciences, 75, 1235, https://doi.org/10.1007/s12665-016-6032-4
    [Google Scholar]
  42. Kushnir, R., Ullmann, A. & Dayan, A.
    2010. Compressed air flow within aquifer reservoirs of CAES plants. Transport in Porous Media, 81, 219–240, https://doi.org/10.1007/s11242-009-9397-y
    [Google Scholar]
  43. Kushnir, R., Dayan, A. & Ullmann, A.
    2012a. Temperature and pressure variations within compressed air energy storage caverns. International Journal of Heat and Mass Transfer, 55, 5616–5630, https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.055
    [Google Scholar]
  44. Kushnir, R., Ullmann, A. & Dayan, A.
    2012b. Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: A review. Reviews in Chemical Engineering, 28, 123–148, https://doi.org/10.1515/revce-2012-0006
    [Google Scholar]
  45. LBEG
    . 2015. Untertage-Gasspeicherung in Deutschland [Underground Gas Storage in Germany]. Erdöl Erdgas Kohle,131, 398–406.
    [Google Scholar]
  46. Lemmon, E.W., Jacobsen, R.T., Penoncello, S.G. & Firend, D.G.
    2000. Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000K at pressures to 2000MPa. Journal of Physical and Chemical Reference Data, 29, 331–385, https://doi.org/10.1063/1.1285884
    [Google Scholar]
  47. Li, D., Bauer, S., Benisch, K., Graupner, B. & Beyer, C.
    2014. OpenGeoSys-ChemApp: A coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotechnica, 9, 67–79, https://doi.org/10.1007/s11440-013-0234-7
    [Google Scholar]
  48. Lu, J., Mickler, P.J., Nicot, J.-P., Yang, C. & Romanak, K.D.
    2014. Geochemical impact of oxygen on siliciclastic carbon storage reservoirs. International Journal of Greenhouse Gas Control, 21, 214–231, https://doi.org/10.1016/j.ijggc.2013.12.017
    [Google Scholar]
  49. Luo, X., Wang, J.
    2016. Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage. Applied Energy, 162, 589–600, https://doi.org/10.1016/j.apenergy.2015.10.091
    [Google Scholar]
  50. MELUR
    . 2015. Abregelung von Strom aus erneuerbaren Energien und daraus resultierende Entschädigungsansprüche in den Jahren 2010 bis 2014 [Curtailment of Renewable Power Production and Resulting Compensation Claims in the Years 2010 to 2014]. Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein (MELUR), Kiel, Germany.
    [Google Scholar]
  51. Mitiku, A.B. & Bauer, S.
    2013. Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environmental Earth Sciences, 70, 3661–3673, https://doi.org/10.1007/s12665-013-2580-z
    [Google Scholar]
  52. Mitiku, A.B., Li, D., Bauer, S. & Beyer, C.
    2013. Geochemical modelling of CO2–water–rock interactions in a potential storage formation of the North German sedimentary basin. Applied Geochemistry, 36, 168–186, https://doi.org/10.1016/j.apgeochem.2013.06.008
    [Google Scholar]
  53. Morris, C. & Pehnt, M.
    2012. Energy Transition: The German Energiewende. Heinrich Böll Stiftung , Berlin, Germany.
    [Google Scholar]
  54. Nakhamkin, M., Schainker, R.B., Chiruvolu, M., Patel, M., Byrd, S. & Marean, J.
    2009. Second generation of CAES technology – performance, operations, economics, renewable load management, green energy. Paper presented at POWER-GEN International, 8–10 December 2009, Las Vegas, Nevada, USA.
  55. Nazary Moghadam, S., Mirzabozorg, H. & Noorzad, A.
    2013. Modeling time-dependent behavior of gas caverns in rock salt considering creep, dilatancy and failure. Tunnelling and Underground Space Technology, 33, 171–185, https://doi.org/10.1016/j.tust.2012.10.001
    [Google Scholar]
  56. Oldenburg, C.M. & Pan, L.
    2013a. Porous media compressed-air energy storage (PM-CAES): Theory and simulation of the coupled wellbore–reservoir system. Transport in Porous Media, 97, 201–221, https://doi.org/10.1007/s11242-012-0118-6
    [Google Scholar]
  57. 2013b. Utilization of CO2 as cushion gas for porous media compressed air energy storage. Greenhouse Gases: Science and Technology, 3, 124–135, https://doi.org/10.1002/ghg.1332
    [Google Scholar]
  58. Pei, P., Korom, S.F., Ling, K., He, J. & Gil, A.
    2015. Thermodynamic impact of aquifer permeability on the performance of a compressed air energy storage plant. Energy Conversion and Management, 97, 340–350, https://doi.org/10.1016/j.enconman.2015.03.072
    [Google Scholar]
  59. Pfeiffer, W.T. & Bauer, S.
    2015. Subsurface porous media hydrogen storage – scenario development and simulation. Energy Procedia, 76, 565–572, https://doi.org/10.1016/j.egypro.2015.07.872
    [Google Scholar]
  60. Pfeiffer, W.T., al Hagrey, S.A., Köhn, D., Rabbel, W. & Bauer, S.
    2016. Porous media hydrogen storage at a synthetic, heterogeneous field site: numerical simulation of storage operation and geophysical monitoring. Environmental Earth Sciences, 75, 1177, https://doi.org/10.1007/s12665-016-5958-x
    [Google Scholar]
  61. Pfeiffer, W.T., Beyer, C. & Bauer, S.
    2017. Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects. Petroleum Geoscience. First published online March 9,2017, https://doi.org/10.1144/petgeo2016-050
    [Google Scholar]
  62. Popp, S., Beyer, C., Dahmke, A., Koproch, N., Köber, R. & Bauer, S.
    2016. Temperature-dependent dissolution of residual non-aqueous phase liquids: model development and verification. Environmental Earth Sciences, 75, 953, https://doi.org/10.1007/s12665-016-5743-x
    [Google Scholar]
  63. Raju, M. & Khaitan, S.K.
    2012. Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant. Applied Energy, 89, 474–481, https://doi.org/10.1016/j.apenergy.2011.08.019
    [Google Scholar]
  64. Reitenbach, V., Ganzer, L., Albrecht, D. & Hagemann, B.
    2015. Influence of added hydrogen on underground gas storage: a review of key issues. Environmental Earth Sciences, 6927–6937, https://doi.org/10.1007/s12665-015-4176-2
    [Google Scholar]
  65. RWE Power
    . 2010. ADELE – Adiabatic Compressed-Air Energy Storage for Electricity Supply . RWE Power, Essen, Germany, http://www.rwe.com/web/cms/mediablob/en/391748/data/364260/1/rwe-power-ag/innovations/Brochure-ADELE.pdf
  66. Schlumberger
    . 2016. Eclipse Reservoir Simulation Software v 2016.1 – Technical Description Manual. Schlumberger Ltd, Houston, TX, USA.
    [Google Scholar]
  67. Schulte, R.H., Critelli, N., Holst, K. & Huff, G.
    2012. Lessons from Iowa: Development of a 270 Megawatt Compressed Air Energy Storage Project in Midwest Independent System Operator. Sandia Report SAND2012-0388. Sandia National Laboratories, Albuquerque, NM/ Livermore, CA, USA.
    [Google Scholar]
  68. Sternberg, A. & Bardow, A.
    2015. Power-to-What? – Environmental assessment of energy storage systems. Energy & Environmental Science, 8, 389–400, https://doi.org/10.1039/C4EE03051F
    [Google Scholar]
  69. Sterner, M. & Stadler, I.
    2014. Energiespeicher – Bedarf, Technologien, Integration [Energy Storage – Demand, Technology, Integration]. Springer, Berlin, https://doi.org/10.1007/978-3-642-37380-0
    [Google Scholar]
  70. Succar, S. & Williams, R.
    2008. Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power. Princeton University, Energy Analysis Group, Princeton, NJ, USA.
    [Google Scholar]
  71. Wiles, L.E. & McCann, R.A.
    1981. Water Coning in Porous Media Reservoirs for Compressed Air Energy Storage. Technical Report PNL-3047. Pacific Northwest Laboratory, Richland, WA, USA.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-049
Loading
/content/journals/10.1144/petgeo2016-049
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error