1887
Volume 22, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The offshore Levant Basin demonstrates one of the most phenomenal natural examples of a working petroleum system associated with a relatively rapid unloading and loading cycle caused by the Messinian salinity crisis (MSC). In this study, 2D basin and petroleum systems modelling suggests that the geologically instantaneous water unloading of approximately 2070 m, and subsequent rapid salt deposition and refill, impact the subsurface pore pressure and temperature in the underlying sediments. The pressure drop is modelled to be instantaneous, whereas the impact on temperature is more of a transient response. This has important consequences for the shallow sub-Messinian biogenic petroleum system, which is assumed to have experienced fluid brecciation associated with massive fluid escape events. Deeper Oligo-Miocene sediments are far less affected, thus indicating a ‘preservation window’ for biogenic gas accumulations, which host the recent discoveries (Tamar, Leviathan, Aphrodite). Hydrocarbon accumulations of a ‘bubblepoint oil’ composition are modelled to have experienced cap expansion during the drawdown, with the pressure drop being the primary control. This study suggests that seal-limited traps are expected to have undergone a catastrophic seal failure, whereas the impact of the MSC is modelled to be less destructive for size-limited and, particularly, charge-limited traps.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-054
2016-09-16
2020-02-26
Loading full text...

Full text loading...

References

  1. Ala, M.A. & Moss, B.
    1979. Comparative petroleum geology of southeast Turkey and northeast Syria. Journal of Petroleum Geology, 1, 3–27.
    [Google Scholar]
  2. Al-Balushi, A., Fraser, A.J., Jackson, C.A.-L. & Allen, P.A.
    2012. The tectono-stratigraphic evolution of the Eastern Mediterranean and implications for the development of petroleum systems, offshore Nile Delta and Levant Margin. Paper presented at the Petroleum Geoscience Research Collaboration Showcase, 21–22 November2012, Earls Court, London.
  3. Al-Balushi, A., Fraser, A.J., Allen, P.A. & Jackson, C.A.-L.
    2013. Quantifying the impact of the Messinian Salinity Crisis on the Eastern Mediterranean petroleum systems. AAPG Search and Discovery Article 90161 presented at the AAPG European Regional Conference and Exhibition, 8–10 April2013, Barcelona, Spain.
  4. Al Ghafri, S.Z., Maitland, G.C. & Trusler, J.P.M.
    2014. Experimental and modeling study of the phase behavior of synthetic crude oil + CO2 . Fluid Phase Equilibria, 365, 20–40, http://doi.org/http://dx.doi.org/10.1016/j.fluid.2013.12.018
    [Google Scholar]
  5. Allen, P.A. & Allen, J.R.
    2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. John Wiley, Chichester.
    [Google Scholar]
  6. Almogi-Labin, A., Bein, A. & Sass, E.
    1993. Late Cretaceous upwelling system along the southern Tethys margin (Israel): interrelationship between productivity, bottom water environments, and organic matter preservation. Paleoceanography, 8, 671–690.
    [Google Scholar]
  7. Alsharhan, A.S.
    2003. Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. American Association of Petroleum Geologists Bulletin, 87, 143–180, http://doi.org/10.1306/062002870143
    [Google Scholar]
  8. Alsharhan, A.S. & Abd El-Gawad, E.A.
    2008. Geochemical characterization of potential Jurassic/Cretaceous source rocks in the Shushan Basin, northern Western Desert, Egypt. Journal of Petroleum Geology, 31, 191–212, http://doi.org/10.1111/j.1747-5457.2008.00416.x
    [Google Scholar]
  9. Andresen, K.J. & Huuse, M.
    2011. ‘Bulls-eye’ pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial. Marine Geology, 279, 111–127, http://doi.org/10.1016/j.margeo.2010.10.016
    [Google Scholar]
  10. Andresen, K.J., Huuse, M. & Clausen, O.
    2008. Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea – implications for bottom current activity and fluid migration. Basin Research, 20, 445–466.
    [Google Scholar]
  11. Bartol, J. & Govers, R.
    2009. Flexure due to the Messinian–Pontian sea level drop in the Black Sea. Geochemistry, Geophysics, Geosystems, 10, Q10013, http://doi.org/10.1029/2009gc002672
    [Google Scholar]
  12. Bein, A. & Gvirtzman, G.
    1977. A Mesozoic fossil edge of the Arabian plate along the Levant coastline and its bearing on the evolution of the Eastern Mediterranean. In: Diju-Duval, B. & MontadertL. (eds) Structural History of the Mediterranean Basins.Technip, Paris, 95–110.
    [Google Scholar]
  13. Ben-Avraham, Z.
    1989. Multiple opening and closing of the eastern Mediterranean and south China basins. Tectonics, 8, 351–362.
    [Google Scholar]
  14. Ben-Avraham, Z., Ginzburg, A., Makris, J. & Eppelbaum, L.
    2002. Crustal structure of the Levant Basin, eastern Mediterranean. Tectonophysics, 346, 23–43.
    [Google Scholar]
  15. Ben-Avraham, Z., Woodside, J., Lodolo, E., Gardosh, M., Grasso, M., Camerlenghi, A. & Vai, G.B.
    2006. Eastern Mediterranean basin systems. In: Gee, D.G. & Stephenson, R.A. (eds) European Lithosphere Dynamics. Geological Society, London, Memoirs, 32, 263–276, http://doi.org/10.1144/GSL.MEM.2006.032.01.15
    [Google Scholar]
  16. Ben-Gai, Y., Ben-Avraham, Z., Buchbinder, B. & Kendall, C.G.S.C.
    2005. Post-Messinian evolution of the Southeastern Levant Basin based on two-dimensional stratigraphic simulation. Marine Geology, 221, 359–379, http://doi.org/http://dx.doi.org/10.1016/j.margeo.2005.03.003
    [Google Scholar]
  17. Bertoni, C. & Cartwright, J.A.
    2005. 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean. Journal of the Geological Society, London, 162, 909–926, http://doi.org/10.1144/0016-764904-126
    [Google Scholar]
  18. Bertoni, C., Cartwright, J. & Hermanrud, C.
    2013. Evidence for large-scale methane venting due to rapid drawdown of sea level during the Messinian Salinity Crisis. Geology, 41, 371–374, http://doi.org/10.1130/g33987.1
    [Google Scholar]
  19. Bizarro, P.
    1998. Subcircular features and autotracking artefacts in 3D seismic interpretation; a case study from the central North Sea. Petroleum Geoscience, 4, 173–179, http://doi.org/10.1144/petgeo.4.2.173
    [Google Scholar]
  20. Bou Daher, S., Nader, F., Strauss, H. & Littke, R.
    2014. Depositional environment and source rock characterisation of organic-matter rich Upper Santonian–Upper Campanian carbonates, Northern Lebanon. Journal of Petroleum Geology, 37, 5–24.
    [Google Scholar]
  21. Carrigan, W.J., Cole, G.A., Colling, E.L. & Jones, P.J.
    1995. Geochemistry of the upper jurassic tuwaiq mountain and hanifa formation petroleum source rocks of eastern Saudi Arabia. In: Petroleum Source Rocks. Springer, Berlin, 67–687.
    [Google Scholar]
  22. Cavanagh, A.J., Di Primio, R., Scheck-Wenderoth, M. & Horsfield, B.
    2006. Severity and timing of Cenozoic exhumation in the southwestern Barents Sea. Journal of the Geological Society, London, 163, 761–774, http://doi.org/10.1144/0016-76492005-146
    [Google Scholar]
  23. Cowie, L. & Kusznir, N.
    2012. Mapping crustal thickness and oceanic lithosphere distribution in the Eastern Mediterranean using gravity inversion. Petroleum Geoscience, 18, 373–380, http://doi.org/10.1144/petgeo2011-071
    [Google Scholar]
  24. Dandekar, A.Y.
    2013. Petroleum Reservoir Rock and Fluid Properties. CRC Press, Boca Raton, LA.
    [Google Scholar]
  25. Dewey, J.F., Pitman, W.C., Ryan, W.B.F. & Bonnin, J.
    1973. Plate Tectonics and the Evolution of the Alpine System. Geological Society of America Bulletin, 84, 3137–3180, http://doi.org/10.1130/0016-7606(1973)84<3137:ptateo>2.0.co;2
    [Google Scholar]
  26. Dimitrov, L.I.
    2002. Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59, 49–76.
    [Google Scholar]
  27. di Primio, R. & Horsfield, B.
    2006. From petroleum-type organofacies to hydrocarbon phase prediction. American Association of Petroleum Geologists Bulletin, 90, 1031–1058, http://doi.org/10.1306/02140605129
    [Google Scholar]
  28. Dolson, J.C., Shann, M.V., Matbouly, S., Harwood, C., Rashed, R. & Hammouda, H.
    2001. The Petroleum Potential of Egypt. In: Downey, M.W., Threet, J.C. & Morgan, W.A. (eds) Petroleum Provinces of the Twenty-first Century. American Association of Petroleum Geologists, Memoirs, 74, 453–482.
    [Google Scholar]
  29. Doré, A.G., Corcoran, D.V. & Scotchman, I.C.
    2002. Prediction of the hydrocarbon system in exhumed basins, and application to the NW European margin. In: Doré, A.G., Cartwright, J.A., Stoker, M.S., Turner, J.P. & White, N. (eds) Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration. Geological Society, London, Special Publications, 196, 401–429, http://doi.org/10.1144/GSL.SP.2002.196.01.21
    [Google Scholar]
  30. Druckman, Y., Conway, B. et al.
    1994. The Stratigraphy of the Yam Yafo 1 Borehole. Report GSI/28/94. Israel Geological Survey, Jerusalem, Israel.
    [Google Scholar]
  31. Dubille, M. & Thomas, D.
    2012. Petroleum system assessment of the offshore Lebanon through 3D basin modeling. Paper presented at the Lebanese International Petroleum Exploration Forum (LIPE), , 3–4 July 2012, Beirut, Lebanon.
    [Google Scholar]
  32. Dupré, S., Woodside, J., Klaucke, I., Mascle, J. & Foucher, J.-P.
    2010. Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Marine Geology, 275, 1–19.
    [Google Scholar]
  33. Duran, E.R., di Primio, R., Anka, Z., Stoddart, D. & Horsfield, B.
    2013. 3D-basin modelling of the Hammerfest Basin (southwestern Barents Sea): A quantitative assessment of petroleum generation, migration and leakage. Marine and Petroleum Geology, 45, 281–303.
    [Google Scholar]
  34. Durham, L.
    2013. Levant Basin brings potential to new areas. AAPG Explorer,May 2013.
    [Google Scholar]
  35. Emeis, K.C., Robertson, A.H.F., Richter, C. et al.
    1996. Paleoceanography and sapropel introduction. In: Proceedings of the Ocean Drilling Program, Initial Reports, Volume 160. Ocean Drilling Program, College Station, TX, 21–28.
    [Google Scholar]
  36. Eruteya, O.E., Waldmann, N., Schalev, D., Makovsky, Y. & Ben-Avraham, Z.
    2015. Intra-to post-Messinian deep-water gas piping in the Levant Basin, SE Mediterranean. Marine and Petroleum Geology, 66, 246–261.
    [Google Scholar]
  37. Flexer, A., Rosenfeld, A., Lipson-Benitah, S. & Honigstein, A.
    1986. Relative sea level changes during the Cretaceous in Israel. American Association of Petroleum Geologists Bulletin, 70, 1685–1699.
    [Google Scholar]
  38. Fraser, A., Guderjahn, C.G., Allen, H. & Al-Balushi, A.
    2011. The Messinian Salinity Crisis: Impact on prospectivity in the E. Mediterranean. Paper presented at the AAPG International Conference and Exhibition, 23–26 October 2011, Milan, Italy.
    [Google Scholar]
  39. Gardosh, M.A. & Druckman, Y.
    2006. Seismic stratigraphy, structure and tectonic evolution of the Levantine Basin, offshore Israel. In: Robertson, A.H.F. & Mountrakis, D. (eds) Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, Special Publications, 260, 201–227, http://doi.org/10.1144/GSL.SP.2006.260.01.09
    [Google Scholar]
  40. Gardosh, M.A., Garfunkel, Z., Druckman, Y. & Buchbinder, B.
    2010. Tethyan rifting in the Levant Region and its role in Early Mesozoic crustal evolution. In: Homberg, C. & Bachmann, M. (eds) Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic. Geological Society, London, Special Publications, 341, 9–36, http://doi.org/10.1144/SP341.2
    [Google Scholar]
  41. Gardosh, M., Weimer, P. & Flexer, A.
    2011. The sequence stratigraphy of Mesozoic successions in the Levant margin, southwestern Israel: A model for the evolution of southern Tethys margins. American Association of Petroleum Geologists Bulletin, 95, 1763–1793, http://doi.org/10.1306/02081109135
    [Google Scholar]
  42. Garfunkel, Z.
    1998. Constrains on the origin and history of the Eastern Mediterranean basin. Tectonophysics, 298, 5–35.
    [Google Scholar]
  43. Garfunkel, Z. & Derin, B.
    1984. Permian–early Mesozoic tectonism and continental margin formation in Israel and its implications for the history of the Eastern Mediterranean. In: Dixon, J.E & Robertson, A.H.F. (eds) The Geological Evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17, 187–201, http://doi.org/10.1144/GSL.SP.1984.017.01.12
    [Google Scholar]
  44. Gemmer, L., Huuse, M., Clausen, O.R. & Nielsen, S.B.
    2002. Mid-Palaeocene palaeogeography of the eastern North Sea basin: integrating geological evidence and 3D geodynamic modelling. Basin Research, 14, 329–346.
    [Google Scholar]
  45. Gill, D., Conway, B., Eshet, Y., Lipson, S., Perelis-Grossowicz, L., Rosenfeld, A. & Siman-Tov, R.
    1995. The Stratigraphy of the Yam West 1 Borehole. Report GSI/13/95. Israel Geological Survey, Jerusalem, Israel.
    [Google Scholar]
  46. Ginzburg, A., Makris, J., Fuchs, K., Prodehl, C., Kaminski, W. & Amitai, U.
    1979. A seismic study of the crust and upper mantle of the Jordan-Dead Sea rift and their transition toward the Mediterranean Sea. Journal of Geophysical Research: Solid Earth, 84, 1569–1582.
    [Google Scholar]
  47. Ginzburg, A., Ben-Avraham, Z., Makris, J., Hubral, P. & Rotstein, Y.
    1994. Crustal structure of northern Israel. Marine and Petroleum Geology, 11, 501–506.
    [Google Scholar]
  48. Glennie, K.W.
    2009. Petroleum Geology of the North Sea: Basic Concepts and Recent Advances. John Wiley, Chichester.
    [Google Scholar]
  49. Goldberg, M. & Friedman, G.M.
    1974. Paleoenvironments and Paleogeographic Evolution of the Jurassic System in Southern Israel. State of Israel, Ministry of Commerce and Industry/Israel Geological Survey, Jerusalem, Israel.
    [Google Scholar]
  50. Gumati, Y. & Schamel, S.
    1988. Thermal maturation history of the Sirte Basin, Libya. Journal of Petroleum Geology, 11, 205–218.
    [Google Scholar]
  51. Gvirtzman, G. & Buchbinder, B.
    1978. The late Tertiary of the coastal plain and continental shelf of Israel and its bearing on the history of the Eastern Mediterranean. In:Initial Reports of the Deep Sea Drilling Project, Volume 42. United States Government Printing Office, Washington, DC, 1195–1222.
    [Google Scholar]
  52. Hallett, D.
    2002. Petroleum Geology of Libya. Elsevier Science, Amsterdam.
    [Google Scholar]
  53. Hantschel, T. & Kauerauf, A.I.
    2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Dordrecht.
    [Google Scholar]
  54. Hawie, N., Gorini, C., Deschamps, R., Nader, F.H., Montadert, L., Granjeon, D. & Baudin, F.
    2013. Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology, 48, 392–410, http://doi.org/10.1016/j.marpetgeo.2013.08.004
    [Google Scholar]
  55. Henriksen, E., Bjørnseth, H.M. et al.
    2011. Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems. In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sørensen, K. (eds) Arctic Petroleum Geology. Geological Society, London, Memoirs, 35, 271–281, http://doi.org/10.1144/M35.17
    [Google Scholar]
  56. Hilgen, F.J. & Langereis, C.G.
    1993. A critical re-evaluation of the Miocene/Pliocene boundary as defined in the Mediterranean. Earth and Planetary Science Letters, 118, 167–179.
    [Google Scholar]
  57. Hilgen, F., Kuiper, K., Krijgsman, W., Snel, E. & van der Laan, E.
    2007. Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis. Stratigraphy, 4, 231–238.
    [Google Scholar]
  58. Hirsch, F., Flexer, A., Rosenfeld, A. & Yellin Dror, A.
    1995. Palinspastic and crustal setting of the eastern Mediterranean. Journal of Petroleum Geology, 18, 149–170.
    [Google Scholar]
  59. Hodgson, N.
    2012. The Miocene hydrocarbon play in Southern Lebanon. First Break, 30, 93–98.
    [Google Scholar]
  60. Hsü, K.J.
    1972. Origin of saline giants: A critical review after the discovery of the Mediterranean Evaporite. Earth-Science Reviews, 8, 371–396.
    [Google Scholar]
  61. Hsü, K.J., Ryan, W.B.F. & Cita, M.B.
    1973. Late Miocene desiccation of the Mediterranean. Nature, 242, 240–244.
    [Google Scholar]
  62. Hsü, K.J., Montadert, L. et al.
    1977. History of the Mediterranean salinity crisis. Nature, 267, 399–403.
    [Google Scholar]
  63. Iadanza, A., Sampalmieri, G., Cipollari, P., Mola, M. & Cosentino, D.
    2013. The ‘Brecciated Limestones’ of Maiella, Italy: Rheological implications of hydrocarbon-charged fluid migration in the Messinian Mediterranean Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 390, 130–147, http://doi.org/10.1016/j.palaeo.2013.05.033
    [Google Scholar]
  64. Jassim, S.Z. & Goff, J.C.
    2006. Geology of Iraq. Geological Society, London.
    [Google Scholar]
  65. Judd, A.G. & Hovland, M.
    2007. Seabed Fluid Flow: The Impact of Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge.
    [Google Scholar]
  66. King, L.H. & MacLean, B.
    1970. Pockmarks on the Scotian shelf. Geological Society of America Bulletin, 81, 3141–3148.
    [Google Scholar]
  67. Klett, T.R.
    2001. Total Petroleum Systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta—The Bou Dabbous – Tertiary and Jurassic–Cretaceous Composite. United States Geological Survey Bulletin, 2202-D.
    [Google Scholar]
  68. Krijgsman, W., Blanc-Valleron, M.M. et al.
    2002. The onset of the Messinian salinity crisis in the Eastern Mediterranean (Pissouri Basin, Cyprus). Earth and Planetary Science Letters, 194, 299–310.
    [Google Scholar]
  69. Laberg, J.S., Andreassen, K. & Vorren, T.O.
    2012. Late Cenozoic erosion of the high-latitude southwestern Barents Sea shelf revisited. Geological Society of America Bulletin, 124, 77–88.
    [Google Scholar]
  70. Lazar, M., Schattner, U. & Reshef, M.
    2012. The great escape: An intra-Messinian gas system in the eastern Mediterranean. Geophysical Research Letters, 39, L20309, http://doi.org/10.1029/2012gl053484
    [Google Scholar]
  71. Lie, Ø., Skiple, C. & Lowrey, C.
    2011. New insights into the Levantine Basin.GeoExPro, 8, (1), 24–27, http://www.geoexpro.com/articles/2011/01/new-insights-into-the-levantine-basin
    [Google Scholar]
  72. Lindeloff, N., Mogensen, K., van Lingen, P.P., Do, S.H., Frank, S. & Noman, R.
    2008. Fluid-phase behaviour for a miscible-gas-injection EOR Project in a giant offshore oil field with large compositional variations. Paper presented at the SPE Annual Technical Conference and Exhibition, 21–24 September 2008, Denver, Colorado.
    [Google Scholar]
  73. Linjordet, A. & Grung-Olsen, R.
    1978. The Jurassic Snøhvit Gas Field, Hammerfest Basin, offshore northern Norway. In: Halbouty, M.T. (ed.) Giant Oil and Gas Fields of the Decade, 1978–1988. American Association of Petroleum Geologists, Memoirs, 54, 349–370.
    [Google Scholar]
  74. Loncke, L., Mascle, J. & Parties, F.S.
    2004. Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences. Marine and Petroleum Geology, 21, 669–689.
    [Google Scholar]
  75. Longacre, M., Bentham, P., Hanbal, I., Cotton, J. & Edwards, R.
    2007. New crustal structure of the Eastern Mediterranean Basin: Detailed integration and modeling of gravity, magnetic, seismic refraction, and seismic reflection data. Paper presented at the EGM 2007 International Workshop: Innovation in EM, Grav and Mag Methods: A New Perspective for Exploration, 15–18 April 2007, Capri, Italy.
    [Google Scholar]
  76. Macgregor, D.S.
    2012. The development of the Nile drainage system: integration of onshore and offshore evidence. Petroleum Geoscience, 18, 417–431, http://doi.org/10.1144/petgeo2011-074
    [Google Scholar]
  77. MacGregor, D.S. & Moody, R.T.
    1998. Mesozoic and Cenozoic petroleum systems of North Africa. In: MacGregor, D.S., Moody, R.T.J. & Clark-Lowes, D.D. (eds) Petroleum Geology of North Africa. Geological Society, London, Special Publications, 132, 201–216, http://doi.org/10.1144/GSL.SP.1998.132.01.12
    [Google Scholar]
  78. Makris, J., Abraham, Z.B., Behle, A., Ginzburg, A., Giese, P., Steinmetz, L. & Eleftheriou, S.
    1983. Seismic refraction profiles between Cyprus and Israel and their interpretation. Geophysical Journal International, 75, 575–591.
    [Google Scholar]
  79. Mart, Y., Ryan, W.B.F. & Lunina, O.V.
    2005. Review of the tectonics of the Levant Rift system: the structural significance of oblique continental breakup. Tectonophysics, 395, 209–232, http://doi.org/10.1016/j.tecto.2004.09.007
    [Google Scholar]
  80. McKenzie, D.
    1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32.
    [Google Scholar]
  81. Meijer, P.T. & Krijgsman, W.
    2005. A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 240, 510–520.
    [Google Scholar]
  82. Middelburg, J.J., Calvert, S.E. & Karlin, R.
    1991. Organic-rich transition facies in silled basins: Response to sea-level change. Geology, 19, 679–682.
    [Google Scholar]
  83. Moretti, I., Kerdraon, Y. et al.
    2010. South Alamein petroleum system (Western Desert, Egypt). Petroleum Geoscience, 16, 121–132, http://doi.org/10.1144/1354-079309-004
    [Google Scholar]
  84. Nader, F.H.
    2011. The petroleum prospectivity of Lebanon: an overview. Journal of Petroleum Geology, 34, 135–156, http://doi.org/10.1111/j.1747-5457.2011.00498.x
    [Google Scholar]
  85. Needham, D., Hosler, J., Nowak, S., Christensen, C. & Ffrench, J.
    2013. The Tamar Field from discovery to production. Abstract presented at the AAPG European Regional Conference, 8–10 April 2013, Barcelona, Spain.
    [Google Scholar]
  86. Neev, D.
    1975. Tectonic evolution of the Middle East and the Levantine basin (easternmost Mediterranean). Geology, 3, 683–686, http://doi.org/10.1130/0091-7613(1975)3<683:teotme>2.0.co;2
    [Google Scholar]
  87. NPD
    . 2014. Norwegian Petroleum Directorate Factpages, http://factpages.npd.no/factpages/Default.aspx?culture¼en [accessed October 2014].
    [Google Scholar]
  88. Nyland, B., Jensen, L., Skagen, J., Skarpnes, O. & Vorren, T.
    1992. Tertiary uplift and erosion in the Barents Sea: magnitude, timing and consequences. In: Larsen, R.M., Brekke, H., Larsen, B.T. & Talleraas, E. (eds) Structural and Tectonic Modelling and its Application to Petroleum Geology. Norwegian Petroleum Society, Special Publications, 1, 153–162.
    [Google Scholar]
  89. Ohm, S.E., Karlsen, D.A. & Austin, T.J.F.
    2008. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. American Association of Petroleum Geologists Bulletin, 92, 1191–1223.
    [Google Scholar]
  90. Ostanin, I., Anka, Z., Di Primio, R. & Bernal, A.
    2012. Hydrocarbon leakage above the Snøhvit gas field, Hammerfest Basin SW Barents Sea. First Break, 30, 55–60.
    [Google Scholar]
  91. Patton, T.L., Moustafa, A.R., Nelson, R.A. & Abdine, S.A.
    1994. Tectonic evolution and structural setting of the Suez Rift. In: Landon, S.M. (ed.) Interior Rift Basins. American Association of Petroleum Geologists, Memoirs, 59, 9–59.
    [Google Scholar]
  92. Pepper, A.S. & Corvi, P.J.
    1995. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology, 12, 291–319.
    [Google Scholar]
  93. Pilcher, R. & Argent, J.
    2007. Mega-pockmarks and linear pockmark trains on the West African continental margin. Marine Geology, 244, 15–32.
    [Google Scholar]
  94. Roberts, G. & Peace, D.
    2007. Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data. GeoArabia, 12, 99–124.
    [Google Scholar]
  95. Robertson, A.H.
    1998a. Chapter 54: Mesozoic–Tertiary tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence. In: Robertson, A.H.F., Emeis, K.-C., Richter, C. & Camerlenghi, A. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Volume 160. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  96. 1998b. Chapter 33: Miocene shallow-water carbonates on the Eratosthenes Seamount, easternmost Mediterranean Sea. In: Robertson, A.H.F., Emeis, K.-C., Richter, C. & Camerlenghi, A. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Volume 160. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  97. Robertson, A.H.F. & Dixon, J.E.
    1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean. In: Dixon, J.E & Robertson, A.H.F. (eds) The Geological Evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17, 1–74, http://doi.org/10.1144/GSL.SP.1984.017.01.02
    [Google Scholar]
  98. Roveri, M., Bertini, A. et al.
    2008a. A high-resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy, 5, 327–345.
    [Google Scholar]
  99. Roveri, M., Bertini, A. & Cosentino, D.E.A.
    2008b. A high-resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy, 5, 323–342.
    [Google Scholar]
  100. Ryan, W.B.F.
    1976. Quantitative evaluation of the depth of the western Mediterranean before, during and after the Late Miocene salinity crisis. Sedimentology, 23, 791–813, http://doi.org/10.1111/j.1365-3091.1976.tb00109.x
    [Google Scholar]
  101. 1978. Messinian badlands on the southeastern margin of the Mediterranean Sea. Marine Geology, 27, 349–363, http://doi.org/10.1016/0025-3227(78)90039-7
    [Google Scholar]
  102. 2009. Decoding the Mediterranean salinity crisis. Sedimentology, 56, 95–136, http://doi.org/10.1111/j.1365-3091.2008.01031.x
    [Google Scholar]
  103. Ryan, W.B.F. & Cita, M.B.
    1978. The nature and distribution of Messinian erosional surfaces – Indicators of a several-kilometer-deep Mediterranean in the Miocene. Marine Geology, 27, 193–230, http://doi.org/10.1016/0025-3227(78)90032-4
    [Google Scholar]
  104. Schroot, B.M., Klaver, G.T. & Schüttenhelm, R.T.
    2005. Surface and subsurface expressions of gas seepage to the seabed – examples from the Southern North Sea. Marine and Petroleum Geology, 22, 499–515.
    [Google Scholar]
  105. Segev, A., Rybakov, M., Lyakhovsky, V., Hofstetter, A., Tibor, G., Goldshmidt, V. & Ben Avraham, Z.
    2006. The structure, isostasy and gravity field of the Levant continental margin and the southeast Mediterranean area. Tectonophysics, 425, 137–157.
    [Google Scholar]
  106. Skagen, J.I.
    1993. Effects on hydrocarbon potential caused by Tertiary uplift and erosion in the Barents Sea. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds) Arctic Geology and Petroleum Potential. Norwegian Petroleum Society, Special Publications, 711–719.
    [Google Scholar]
  107. Skiple, C., Anderson, E. & Fürstenau, J.
    2012. Seismic interpretation and attribute analysis of the Herodotus and the Levantine Basin, offshore Cyprus and Lebanon. Petroleum Geoscience, 18, 433–442, http://doi.org/10.1144/petgeo2011-072
    [Google Scholar]
  108. Stampfli, G., Marcoux, J. & Baud, A.
    1991. Tethyan margins in space and time. Palaeogeography, Palaeoclimatology, Palaeoecology, 87, 373–409.
    [Google Scholar]
  109. Steckler, M.S., Feinstein, S., Kohn, B.P., Lavier, L.L. & Eyal, M.
    1998. Pattern of mantle thinning from subsidence and heat flow measurements in the Gulf of Suez: Evidence for the rotation of Sinai and along-strike flow from the Red Sea. Tectonics, 17, 903–920.
    [Google Scholar]
  110. Steckler, M.S., Lofi, J., Mountain, G., Ryan, W.B.F., Gorini, C. & Berné, S.
    2003. Reconstruction of the Gulf of Lion margin during the Messinian salinity crisis. Geophysical Research Abstracts, 5, 07319.
    [Google Scholar]
  111. Steinberg, J., Gvirtzman, Z., Folkman, Y. & Garfunkel, Z.
    2011. Origin and nature of the rapid late Tertiary filling of the Levant Basin. Geology, 39, 355–358, http://doi.org/10.1130/g31615.1
    [Google Scholar]
  112. Sweeney, J.J. & BurnhamA.K.
    1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74, 1559–1570.
    [Google Scholar]
  113. Ungerer, P.
    1990. State of the art of research in kinetic modelling of oil formation and expulsion. Organic Geochemistry, 16, 1–25, http://doi.org/10.1016/0146-6380(90)90022-R
    [Google Scholar]
  114. Urgeles, R., Camerlenghi, A. et al.
    2011. New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research, 23, 123–145, http://doi.org/10.1111/j.1365-2117.2010.00477.x
    [Google Scholar]
  115. Villinski, J.
    2013. Unusual but effective petroleum systems – disseminated terrestrial organic matter of the Upper Oligocene as the primary source rock, offshore Nile Delta, Egypt. Abstract presented at the AAPG European Regional Conference, 8–10 April 2013, Barcelona, Spain.
    [Google Scholar]
  116. Wilkinson, D.
    1984. Percolation model of immiscible displacement in the presence of buoyancy forces. Physical Review A, 30, 520–531.
    [Google Scholar]
  117. Woodside, J.
    1977. Tectonic elements and crust of the eastern Mediterranean Sea. Marine Geophysical Researches, 3, 317–354.
    [Google Scholar]
  118. Wygrala, B.P.
    1989. Integrated study of an oil field in the southern Po Basin, northern Italy . PhD thesis, University of Cologne.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-054
Loading
/content/journals/10.1144/petgeo2016-054
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error