1887
Volume 23, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The injection or extraction of fluids in the subsurface for energy purposes (e.g. geothermal exploitation, CO storage or geological energy storage) requires both the operation efficiency and the associated environmental risks to be assessed and controlled. Even though scientific and technological progress allows more accurate 3D modelling of the subsurface, we still do not have a thorough understanding of coupled underground hydromechanical processes. Indeed, the injection or production of fluids interacting with existing geological features can still result in unintended and unexpected ‘harmful’ consequences. This review aims to propose a unified strategy ranging from an understanding of the hydromechanical factors at the origin of the induced seismicity to seismic risk evaluation expressed in terms of ground-motion effects. The challenge is to utilize mechanical modelling to anticipate the evolution of seismicity; how the population perceives this is also an important factor to be taken into account in this risk evaluation. While mechanical modelling may include some degree of uncertainty, probabilistic analysis is capable of providing a quantitative estimation of the risk incurred and feedback to the exploitation strategy.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-065
2016-11-01
2024-03-29
Loading full text...

Full text loading...

References

  1. Aki, K. & Richards, P.G.
    2002. Quantitative Seismology. 2nd edn, University Science Books, Sausalito, CA, USA.
    [Google Scholar]
  2. Aochi, H. & Ulrich, T.
    2015. A probable earthquake scenario near Istanbul determined from dynamic simulations. Bulletin of the Seismological Society of America, 105, 1468–1475, http://doi.org/10.1785/0120140283
    [Google Scholar]
  3. Aochi, H., Poisson, B., Toussaint, R., Rachez, X. & Schmittbuhl, J.
    2014. Self-induced seismicity due to fluid circulation along faults. Geophysical Journal International, 196, 1544–1563, http://doi.org/10.1093/gji/ggt356
    [Google Scholar]
  4. Bachmann, C.E., Wiemer, S., Woessner, J. & Hainzl, S.
    2011. Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems. Geophysical Journal International, 186, 793–807, http://doi.org/10.1111/j.1365-246X.2011.05068.x
    [Google Scholar]
  5. Baisch, S., Carbon, D. et al.
    2009. Deep Heat Mining Basel – Seismic Risk Analysis. SERIANEX Expert Group Report to Kantons Basel-Stadt, http://wsu.bs.ch/dms/wsu/download/abgeschlossene-dossiers/serianex_teil_1_english.pdf .
    [Google Scholar]
  6. Bardainne, T., Dubos-Sallée, N., Sénéchal, G., Gaillot, P. & Perroud, H.
    2008. Analysis of the induced seismicity of the Lacq gas field (Southwestern France) and model of deformation. Geophysical Journal International, 172, 1151–1162, http://doi.org/10.1111/j.1365-246X.2007.03705.x .
    [Google Scholar]
  7. Barth, A., Wenzel, F. & Langenbruch, C.
    2011. Probability of earthquake occurrence and magnitude estimation in the post shut-in phase of geothermal projects. Journal of Seismology, 17, 5–11, http://doi.org/10.1007/s10950-011-9260-9 .
    [Google Scholar]
  8. Bertil, D., Cansi, Y., Descloitres, M., Hyvernaud, O., Massinon, B., Plantet, J.L. & Santoire, J.P.
    1987. Etude de la sismicité du Bassin de Gardanne. [Study of the seismicity in the Gardanne Basin] Technical Report. Commissariat à l'Energie Atomique, Bruyeres le Chatel, France.
    [Google Scholar]
  9. Bommer, J.J., Oates, S. et al.
    2006. Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Engineering Geology, 83, 287–306, http://doi.org/10.1016/j.enggeo.2005.11.002
    [Google Scholar]
  10. Bommer, J.J., Crowley, H. & Pinho, R.
    2015. A risk-mitigation approach to the management of induced seismicity. Journal of Seismology, 19, 623–646, http://doi.org/10.1007/s10950-015-9478-z
    [Google Scholar]
  11. Bourouis, S. & Bernard, P.
    2007. Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients. Geophysical Journal International, 169, 723–732, http://doi.org/10.1111/j.1365-246X.2006.03325.x
    [Google Scholar]
  12. Brodsky, E.E. & Prejean, S.G.
    2005. New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera. Journal of Geophysical Research, 110, http://doi.org/10.1029/2004JB003211
    [Google Scholar]
  13. Calò, M., Dorbath, C., Cornet, F.H. & Curnot, N.
    2011. Large-scale aseismic motion identified through 4-D P-wave tomography. Geophysical Journal International, 186, 1295–1314, http://doi.org/10.1111/j.1365-246X.2011.05108.x
    [Google Scholar]
  14. Cesca, S., Grigoli, F. et al.
    2014. The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection?Geophysical Journal International, 198, 941–953, http://doi.org/10.1093/gji/ggu172
    [Google Scholar]
  15. Deichmann, N. & Giardini, D.
    2009. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismological Research Letters, 80, 784–798, http://doi.org/10.1785/gssrl.80.5.784
    [Google Scholar]
  16. Dominique, P. & Nédellec, J.L.
    2014. Bassin Houiller de Provence (13) – Premiers résultats issus du dispositif de surveillance complémentaire. Technical Report BRGM/RP-63681-FR. Bureau de Recherches Géologiques et Minières, Orléans, France.
    [Google Scholar]
  17. Dorbath, L., Cuenot, N., Genter, A. & Frogneux, M.
    2009. Seismic response of the fractured and faulted granite of Soultz-sous-Forêts (France) to 5 km deep massive water injections. Geophysical Journal International, 177, 653–675, http://doi.org/10.1111/j.1365-246X.2009.04030.x
    [Google Scholar]
  18. Dost, B. & Kraaijpoel, D.
    2013. The August 16, 2012 Earthquake near Huizinge (Groningen). KNMI Scientific Report. Royal Netherlands Meteorological Institute (KNMI), Utrecht, The Netherlands.
    [Google Scholar]
  19. Douglas, J. & Aochi, H.
    2014. Using estimated risk to develop exploitation strategies for Enhanced Geothermal Systems. Pure and Applied Geophysics, 171, 1847–1858, http://doi.org/10.1007/s00024-013-0765-8
    [Google Scholar]
  20. Ellsworth, W.L.
    2013. Injection-induced earthquakes. Science, 341, (6142), http://doi.org/10.1126/science.1225942
    [Google Scholar]
  21. Evans, K.F., Zappone, A., Kraft, T., Deichmann, N. & Moia, F.
    2012. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics, 41, 30–54.
    [Google Scholar]
  22. Farahbod, A.M., Kao, H., Walker, D.M. & Cassidy, J.F.
    2014. Investigation of regional seismicity before and after hydraulic fracturing in the Horn River Basin, northeast British Columbia. Canadian Journal of Earth Sciences, 52, 112–122, http://doi.org/10.1139/cjes-2014-0162
    [Google Scholar]
  23. Feignier, B. & Grasso, J.-R.
    1990. Seismicity induced by gas production: I. Correlation of focal mechanisms and dome structure. Pure and Applied Geophysics, 134, 405–426.
    [Google Scholar]
  24. 1991. Relation between seismic source parameters and mechanical properties of rocks: A case study. Pure and Applied Geophysics, 137, 175–199.
    [Google Scholar]
  25. Gibowicz, S.J. & Kijko, A.
    1994. An Introduction to Mining Seismology. Academic Press, New York.
    [Google Scholar]
  26. Gonzalez, P.J., Tiampo, K.F. Palano, M., Cannovo, F. & Fernandez, J.
    2012. The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nature Geoscience, 5, 821–825, http://doi.org/10.1038/ngeo1610
    [Google Scholar]
  27. Green, C.A., Styles, P. & Baptie, B.J.
    2012. Preese Hall Shale Gas Fracturing: Review & Recommendations for Induced Seismic Mitigation. Report to the Department of Energy and Climate Change (currently Oil and Gas Authority) of the UK.
    [Google Scholar]
  28. Grünthal, G., Wahlström, R. & Stromeyer, D.
    2013. The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900-2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC). Journal of Seismology, 17, 1339–1344.
    [Google Scholar]
  29. Gupta, H. Narain, H., Rastogi, B.K. & Mohan, I.
    1969. A study of the Koyna earthquake of December 10, 1967. Bulletin of the Seismological Society of America, 59, 1149–1162.
    [Google Scholar]
  30. Häring, M.O., Schanz, U., Ladner, F. & Dyer, B.C.
    2008. Characterisation of the Basel 1 Enhanced Geothermal System. Geothermics, 37, 469–495, http://doi.org/10.1016/j.geothermics.2008.06.002
    [Google Scholar]
  31. Healy, J.H., Rubey, W.W., Griggs, D.T. & Raleigh, C.B.
    1968. The Denver earthquakes. Science, 161, 1301–1310.
    [Google Scholar]
  32. Hill, D.P., Reasenberg, P.A. et al.
    1993. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science, 260, 1617–1623.
    [Google Scholar]
  33. Hornbach, M., DeShon, H.R. et al.
    2015. Causal factors for seismicity near Azle, Texas. Nature Communications, 6, 6728, http://doi.org/10.1038/ncomms7728
    [Google Scholar]
  34. Ida, Y.
    1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. Journal of Geophysical Research, 77, 3796–3805.
    [Google Scholar]
  35. IEAGHG
    . 2013. Induced Seismicity and Its Implications for CO2 Storage Risk. Technical Report 2013/09. IEA Greenhouse Gas R&D Programme (EAGHG), Cheltenham, UK, http://www.ieaghg.org/publications/technical-reports
    [Google Scholar]
  36. Karanen, K., Savage, H.M., Abers, G.A. & Cochran, E.S.
    2012. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41, 699–702, http://doi.org/1130/G34045.1
    [Google Scholar]
  37. Majer, E.L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B. & Asanuma, H.
    2007. Induced seismicity associated with Enhanced Geothermal Systems. Geothermics, 36, 185–222, http://doi.org/10.1016/j.geothermics.2007.03.003
    [Google Scholar]
  38. Majer, E., Nelson, J., Robertson-Tait, A., Savy, J. & Wong, I.
    2012. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems. DOE/EE-0662. Geothermal Technologies Program, United States Department of Energy, Washington, DC, USA.
    [Google Scholar]
  39. Maury, V.M.R., Grasso, J.-R. & Wittlinger, G.
    1992. Monitoring of subsidence and induced seismicity in the Lacq Gas Field (France): the consequences on gas production and field operation. Engineering Geology, 32, 123–135.
    [Google Scholar]
  40. Mena, B., Wiemer, S. & Bachmann, C.
    2013. Building robust models to forecast the induced seismicity related to geothermal reservoir enhancement. Bulletin of the Seismological Society of America, 103, 383–393, http://doi.org/10.1785/0120120102
    [Google Scholar]
  41. Rachez, X. & Gentier, S.
    2010. 3D-hydromechanical behavior of a stimulated fractured rock mass. In: Proceedings of the World Geothermal Conference, 2010, Bali, Indonesia, 25–29 April 2010.
    [Google Scholar]
  42. Rohmer, J. & Aochi, H.
    2015. Impact of channel-like erosion patterns on the frequency–magnitude distribution of earthquakes. Geophysical Journal International, 202, 670–677.
    [Google Scholar]
  43. Rohmer, J., Loschetter, A., Raucoules, D., de Michele, M., Raffard, D. & Le Gallo, Y.
    2015. Revealing the surface deformation induced by deep CO2 injection in vegetal/agricultural areas: the combination of cornet reflectors, reservoir simulations and spatio-temporal statistics. Engineering Geology, 197, 188–197.
    [Google Scholar]
  44. Ruina, A.
    1983. Slip instability and state variable friction laws. Journal of Geophysical Research, 88, (B12), 10,359–10,370.
    [Google Scholar]
  45. Rutqvist, J., Rinaldi, A.P., Cappa, F. & Moridis, G.J.
    2013. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. Journal of Petroleum Science and Engineering, 107, 31–44.
    [Google Scholar]
  46. Rutqvist, J., Cappa, F., Rinaldi, A.P. & Godano, M.
    2014. Modeling of induced seismicity and ground vibrations associated with geological CO2 storage, and assessing their effects on surface structures and human perception. International Journal of Greehouse Gas Control, 24, 64–77, http://doi.org/10.1016/j.ijggc.2014.02.017
    [Google Scholar]
  47. Segall, P. & Rice, J.R.
    1995. Dilatancy, compaction and slip instability of a fluid-infiltrated fault.Journal of Geophysical Research, 100, 22,155–22,171.
    [Google Scholar]
  48. Segall, P., Grasso, J.-R. & Mossop, A.
    1994. Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. Journal of Geophysical Research, 99, (B8), 15423–15438.
    [Google Scholar]
  49. Shapiro, S., Huenges, E. & Borm, G.
    1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International, 131, F15–F18.
    [Google Scholar]
  50. Simpson, D.W., Leith, W.S. & Scholz, C.H.
    1988. Two types of reservoir-induced seismicity. Bulletin of the Seismological Society of America, 78, 2025–2040.
    [Google Scholar]
  51. Sira, C., Cara, M. & Schlupp, A.
    2008. Séisme de Saarlouis du 23 février 2008, note macrosismique. Technical Report of the Bureau Central Sismologique Français, BCSF2008-R3. Bureau Central Sismologique Français (BCSF), Strasbourg, France.
    [Google Scholar]
  52. Walsh, F.R., III. & Zoback, M.D.
    2015. Oklahoma's recent earthquakes and saltwater disposal. Science Advances, 1, (5), e1500195, http://doi.org/10.1126/sciadv.1500195
    [Google Scholar]
  53. Walters, R.J., Zoback, M.D., Baker, J.W. & Beroza, G.C.
    2015. Characterizing and responding to seismic risk associated with earthquakes potentially triggered by fluid disposal and hydraulic fracturing. Seismological Research Letters, 86, 1110–1118, http://doi.org/10.1785/0220150048
    [Google Scholar]
  54. White, J.A., Foxall, W., Bachmann, C., Daley, T.M. & Chiaramonte, L.
    2016. Induced Seismicity and Carbon Storage: Risk Assessment and Mitigation Strategies. NRAP-TRS-II-005-2016.NRAP Technical Report Series. United States Department of Energy, National Energy Technology Laboratory, Morgantown, WV, USA.
    [Google Scholar]
  55. Wilson, M.P., Davies, R.J., Foulger, G.R., Julian, B.R., Styles, P., Gluyas, J.G. & Almond, S.
    2015. Anthropogenic earthquakes in the UK: A national baseline prior to shale exploitation. Marine and Petroleum Geology, 68, (Part A), 1–17.
    [Google Scholar]
  56. Worden, C.B., Gerstenberger, M.C., Rhoades, D.A. & Wald, D.J.
    2012. Probabilistic relationship between ground-motion parameters and Modified Mercalli Intensity in California. Bulletin of the Seismological Society of America, 102, 204–221, http://doi.org/10.1785/0120110156
    [Google Scholar]
  57. Zang, A., Oye, V. et al.
    2014. Analysis of induced seismicity in geothermal reservoirs – An overview. Geothermics, 52, 6–21, http://doi.org/10.1016/j.geothermics.2014.06.005
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-065
Loading
/content/journals/10.1144/petgeo2016-065
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error