1887
Volume 23, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

Detection of the chemical constituents of hydrocarbons in the hydrocarbon-bearing fluid inclusions in diagenetic mineral cements, secondary fractures and overgrowths could be a useful indicator of the nature of oil in a basin. Microscope-based Raman spectroscopy is a non-destructive, optical vibrational spectroscopic technique that can precisely isolate and analyse hydrocarbon fluid inclusions (HCFIs). The main challenge with Raman spectral studies on natural HCFIs is the common presence of fluorescence emission from minerals and aromatic compounds in HCFIs leading to the masking of Raman signals. The present study is a demonstration of how best the Raman signals from natural hydrocarbon-bearing fluid inclusions could be detected using an excitation wavelength of 785 nm with suitable optical parameters and with special wafer preparation techniques to negate the background fluorescence. Using the laser Raman technique we were able to detect peaks corresponding to cyclohexane (786 and 3245 cm), benzene and bromobenzene (606, 1010, 1310, 1486 and 1580 cm), carbon monoxide (2143 cm), nitrogen (2331 cm), ethylene (1296 cm), sulphur oxide (524 cm), carbonyl sulphide (2055 cm), hydrogen sulphide in liquid form (2580 cm) along with the presence of a broad peak of liquid water at 3100–3500 cm, peaks of calcium carbonate (710, 854 cm) and calcium sulphate (1135 cm). The study samples were specially prepared with fluorescence-quenching dyes added with a resin-hardener mixture to eliminate background fluorescence. Nine fluid-inclusion assemblages in minerals like quartz, feldspar and calcite from the RV-1 well of the Ratnagiri Block, Mumbai Offshore Basin, India were investigated.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-071
2017-01-17
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/petgeo/23/3/petgeo2016-071.html?itemId=/content/journals/10.1144/petgeo2016-071&mimeType=html&fmt=ahah

References

  1. Ahmadjian, M. & Brown, C.W.
    1976. Petroleum identification by laser Raman spectroscopy. Analytical Chemistry, 48, 1257–1259.
    [Google Scholar]
  2. Anderson, B., Munz, I.A., Johansen, H. & Johansen, I.
    1998. Compositional and Isotope data on hydrocarbon fluid inclusions- atoll for better understanding of light hydrocarbon migration and trapping.Abstract presented at the 215th American Chemical Society National Meeting , March 29–April 2, 1998, Dallas, Texas.
    [Google Scholar]
  3. Bakker, R.J.
    2004. Raman spectra of fluid and crystal mixtures in the systems H2O, H2O–NaCl and H2O–MgCl2 at low temperatures: applications to fluid-inclusion research. The Canadian Mineralogist, 42, 1283–1314.
    [Google Scholar]
  4. Barres, O., Burneau, A., Dubessy, J. & Pagel, M.
    1987. Application of micro FT-IR spectroscopy to individual hydrocarbon fluid inclusion analysis. Applied Spectroscopy, 41, 1000–1108.
    [Google Scholar]
  5. Bény, C., Guilhaumou, N. & Touray, J.C.
    1982. Native-sulphur-bearing fluid inclusions in the CO2–H2S–H2O–S system – Microthermometry and Raman microprobe (MOLE) analysis – Thermochemical interpretations. Chemical Geology, 37, 113–127.
    [Google Scholar]
  6. Berlman, B.
    1965. Handbook of Fluorescence Spectra of Aromatic Molecules. Academic Press, New York.
    [Google Scholar]
  7. Blamey, N.J.F. & Ryder, A.G.
    2007. Hydrocarbon fluid inclusion fluorescence: a review. In: Geddes, C.D. (ed.) Reviews in Fluorescence. Springer, New York, 299–334.
    [Google Scholar]
  8. Blanchet, A., Pagel, M., Walgenwitz, F. & Lopez, A.
    2003. Microspecrofluorometric and microthermometric evidence for variability in hydrocarbon fluid inclusions in quartz overgrowths: implications for inclusion trapping in the Alwyn North field, North Sea. Organic Geochemistry, 34, 1477–1490.
    [Google Scholar]
  9. Bodnar, R.J.
    1990. Petroleum migration in the Miocene Monterey Formation, California, USA: constraints from fluid inclusion studies. Mineralogist Magazine, 54, 295–304.
    [Google Scholar]
  10. Bourdet, J., Burruss, R.C., Bodnar, R.J. & Eadington, P.J.
    2011. Assessment of UV-Raman for analysis of petroleum inclusions. In: European Current Research on Fluid Inclusions (ECROFI–XXI), Montanuniversität Leoben, Austria, 9–11 August 2011, Abstract Volume, 50–51.
    [Google Scholar]
  11. Burdet, R.A., TaylorL.W. & Jones, L.C., Jr.
    1955. Determination of aromatic hydrocarbons in lubricating oil fractions by far UV absorption spectroscopy. In:Molecular Spectroscopy. Institute of Petroleum, London, 30–41.
    [Google Scholar]
  12. Burke, E.A.J.
    2001. Raman microspectrometry of fluid inclusions. Lithos, 55, 139–158.
    [Google Scholar]
  13. Burruss, R.C.
    2003a. Petroleum fluid inclusions, an introduction. In: Samson, I., Anderson, A. & Marshall, D. (eds) Fluid inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Short Course Series,32, 159–174.
    [Google Scholar]
  14. 2003b. Raman spectroscopy of fluid inclusions. In: Samson, I., Anderson, A. & Marshall, D. (eds) Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Short Course Series, 32, 279–289.
    [Google Scholar]
  15. Chen, J., Yao-Wen, H. & Zhaob, Y.
    2015. Characterization of polycyclic aromatic hydrocarbons using Raman and surface enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 46, 64–69.
    [Google Scholar]
  16. Dearing, T.I., Thompson, W.J., Rechsteiner, C.E. & Marquardt, B.J.
    2011. Characterization of crude oil products using data fusion of process Raman, infrared, and nuclear magnetic resonance (NMR) spectra. Applied Spectroscopy, 65, 181–186.
    [Google Scholar]
  17. Dias, R.J.
    1987. Handbook of Polycyclic Hydrocarbons: Part A. Benzenoid Hydrocarbons. Elsevier, Amsterdam.
    [Google Scholar]
  18. Dollish, F.R., Fateley, W.G. & Bentely, F.F.
    1974. Characteristics of Raman Frequencies of Organic Compounds. Wiley, New York.
    [Google Scholar]
  19. Dubessy, J., Caumon, M.C., Rull, F. & Sharma, S.
    2012. Chapter 3. Instrumentation in Raman spectroscopy: elementary theory and practice. In: Dubessy, J., Caumon, M.-C. & Rull, F. (eds) Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage. EMU Notes in Mineralogy, 12, 83–172.
    [Google Scholar]
  20. Frezzotti, M.L., Tecce, F. & Casagli, A.
    2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1–20.
    [Google Scholar]
  21. George, S.C., Ruble, T.E., Dutkiewicz, A. & Eadington, P.J.
    2001. Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually determined fluorescence colours. Applied Geochemistry, 16, 451–473.
    [Google Scholar]
  22. Goldstein, R.H.
    2001. Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55, 159–193.
    [Google Scholar]
  23. Guilhaumou, N.
    1982. Accurate analysis of fluid inclusions by the laser molecular microprobe (MOLE) and by microthermometry. Travaux Laboratoire de Geologie, Ecole Normale Superieure, Paris, 14, 68 [in French].
    [Google Scholar]
  24. Guilhaumou, N., Jouaffred, D., Velde, B. & Beny, C.
    1988. Raman microprobe analysis on gaseous inclusions from diagenetically altered Terres Noures (S-E, France). Bulletin de Mineralogie, 111, 577–585.
    [Google Scholar]
  25. Guilhaumou, N., Szydlowskii, N. & PradierB.
    1990. Characterization of hydrocarbon fluid inclusions by infrared and fluorescence micro spectrometry. Mineralogical Magazine, 54, 311–324.
    [Google Scholar]
  26. Karlsen, D.A. & Skeie, J.E.
    2006. Petroleum migration, faults and overpressure, part I: Calibrating basin modeling using petroleum in traps – a review. Journal of Petroleum Geology, 29, 227–256.
    [Google Scholar]
  27. Karlsen, D.A., Nedkvitne, T., Larter, S.R. & Bjørlykke, K.
    1993. Hydrocarbon composition of authigenic inclusions, Application to elucidation of petroleum reservoir filling history. Geochemica et Cosmochimica Acta, 57, 3641–3659.
    [Google Scholar]
  28. Karlsen, D.A., Skeie, J.E. et al.
    2004. Petroleum migration, faults and overpressure. Part II. Case history: The Haltenbanken Petroleum Province, offshore Norway. In: Cubitt, J.M., England, W.A. & Larter, S. (eds) Understanding Petroleum Reservoirs: towards an Integrated Reservoir Engineering and Geochemical Approach. Geological Society, London, Special Publications, 237, 305–372, https://doi.org/10.1144/GSL.SP.2004.237.01.18
    [Google Scholar]
  29. Kihle, J.
    1995. Adaptation of fluorescence excitation-emission micro-spectroscopy for characterization of complex organic mixtures: Application in petroleum geochemistry. Organic Geochemistry, 23, 1029–1042.
    [Google Scholar]
  30. Kihle, J., Hurum, J.H. & Liebe, L.
    2012. Preliminary results on liquid petroleum occurring as fluid inclusions in intracellular mineral precipitates in the vertebrae of Pliosaurus funkei . Norwegian Journal of geology, 92, 341–352.
    [Google Scholar]
  31. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R. & Feld, M.S.
    1999. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 99, 2957–2975.
    [Google Scholar]
  32. Lisk, M., O'Brien, G.W. & Eadington, P.J.
    2002. Quantitative evaluation of the oil-leg potential in the Oliver gas field, Timer Sea, Australia. American Association of Petroleum Geology Bulletin, 86, 1531–1542.
    [Google Scholar]
  33. Lopponow, G.R., Shoute, L., Schmidt, K.J., Savage, A., Hall, R.H. & Bulmer, J.T.
    2012. UV Raman spectroscopy of hydrocarbons. Philosophical Transactions of the Royal Society of London, A362, 2461–2476.
    [Google Scholar]
  34. McCreery, R.L.
    2000. Raman Spectroscopy for Chemical Analysis. Wiley-Interscience, New York.
    [Google Scholar]
  35. Munz, I.A.
    2001. Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos, 55, 195–212.
    [Google Scholar]
  36. Munz, I.A., Iden, K., Johansen, H. & Vagle, K.
    1998. The fluid regime during fracturing of the Embla field, Central Trough, North Sea. Marine and Petroleum Geology, 15, 751–768.
    [Google Scholar]
  37. Nai, Z., ZuoJi, T., YingYang, L., HuiTong, W., FuQing, A. & JianHua, M.
    2007. Raman characteristics of hydrocarbon and hydrocarbon inclusions. Science in China Series D: Earth Sciences, 50, 1171–1178.
    [Google Scholar]
  38. O'Grady, M.R., Bodnar, R.J., Hellgeth, J.W., Conroy, C.M., Taylor, L.T. & Knight, C.L.
    1989. Fourier transform infrared microprobe (FTIRM) analysis of individual petroleum inclusions in geologic samples. In: Russel, P.E. (ed.) Microbeam Analysis. San Francisco Press, San Francisco, CA, 579–582.
    [Google Scholar]
  39. Orange, D., Knitile, E., Farber, D. & Williams, Q.
    1996. Raman spectroscopy of crude oils and hydrocarbon fluid inclusions: A feasibility study. In: Dyar, M.D., McCammon, C. & Scaefer, M.W. (eds) Mineral Spectroscopy: A Tribute to Roger G. Burns. Geochemical Society, Special Publications, 5, 65–81.
    [Google Scholar]
  40. Parnell, J., Middleton, D., Honghan, C. & Hall, D.
    2001. The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: examples from the Jeanne d'Arc Basin, offshore Newfoundland. Marine and Petroleum Geology, 18, 535–549.
    [Google Scholar]
  41. Piranon, J. & Barres, O.
    1990. Semi-qunatitative FT-IR microanalysis limits; evidence from synthetic hydrocarbon fluid ncluions in sylvite. Geochimica et Cosmochimica Acta, 54, 509–518.
    [Google Scholar]
  42. Piranon, J. & Pradier, B.
    1992. Ultraviolet-fluorescence alteration of hydrocarbon fluid inclusions. Organic Geochemistry, 18, 501–509.
    [Google Scholar]
  43. Roedder, E.
    1984. Fluid inclusions. Reviews in Mineralogy and Geochemistry, 12, 1–644.
    [Google Scholar]
  44. Rosasco, G.J., Roedder, E. & Simmons, J.H.
    1975. Laser-excited Raman spectroscopy for nondestructive partial analysis of individual phases in fluid inclusions in minerals. Science, 190, 557–560.
    [Google Scholar]
  45. Ryder, A.G., Przyjalgowski, M.A., Feely, M., Szczupak, B. & Glynn, T.J.
    2004. Time-resolved fluorescence micro spectroscopy for characterizing crude oils in bulk and hydrocarbon- bearing fluid inclusions. Applied Spectroscopy, 58, 1106–1115.
    [Google Scholar]
  46. Tarcea, N. & Popp, J.
    2012. Chapter 5. Raman data analysis. In: Dubessy, J., Caumon, M.-C. & Rull, F. (eds) Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage. EMU Notes in Mineralogy, 12, 193–226.
    [Google Scholar]
  47. Touray, J.C., Beny-Bassez, C., Dubessy, J. & Guilhaumou, N.
    1985. Microcharacterization of fluid inclusions in minerals by Raman microprobe. Scanning Electron Microscopy, I, 103–118.
    [Google Scholar]
  48. Verma, D., Jadav, G.N., Biswal, T.K., Jena, S.K. & Sharma, N.
    2012. Characterisation of hydrocarbon-bearing fluid inclusion in sandstones of Jaisalmer Basin, Rajasthan: A Preliminary approach. Journal of the Geological Society of India, 80, 505–514.
    [Google Scholar]
  49. Wopenka, B., PaterisJ.D. &Freeman, J.J.
    1990. Analyis of individual fluid incluions by Fourier transform infrared and Raman microspectrometry. Geochimica et Cosmochimica Acta, 54, 519–533.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-071
Loading
/content/journals/10.1144/petgeo2016-071
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error