1887
Volume 24, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The Laptev Shelf in the East Siberian Arctic represents a rare tectonic setting where an active oceanic spreading centre, the Gakkel Ridge, intersects a continental margin. The North America–Eurasia plate boundary follows the Gakkel Ridge and passes into a continental shelf; this has resulted in the development of a wide rift system that has been active since the Late Cretaceous. The new long-offset seismic profiles provide a reliable basis for deciphering the structural characteristics of this rift system. We use two new seismic profiles, along with one acquired in the 1990s, to examine the crustal architecture of the rift system. Our approach combines seismic interpretation, time to depth conversion of seismic profiles and 2D gravity forward modelling. The obtained results indicate the presence of hyperextended continental crust beneath the Ust' Lena Rift Basin and exhumed continental mantle at the base of the syn-rift succession along the rift axis. The upper crust was removed by brittle stretching, while the lower crust experienced extreme ductile thinning. Our results show that continental crust can be eliminated in the course of rifting without a considerable heat input from asthenospheric mantle.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-143
2017-09-29
2020-06-07
Loading full text...

Full text loading...

References

  1. Brocher, T.M.
    2005. Empirical relations between elastic wavespeeds and density in the Earth's crust. Bulletin of the Seismological Society of America, 95, 2081–2092, https://doi.org/10.1785/0120050077
    [Google Scholar]
  2. Brun, J.P. & Beslier, M.O.
    1996. Mantle exhumation at passive margins. Earth and Planetary Science Letters, 142, 161–173.
    [Google Scholar]
  3. Childers, V.A., Mcadoo, D.C., Brozena, J.M. & Laxon, S.W.
    2001. New gravity data in the Arctic Ocean: Comparison of airborne and ERS gravity. Journal of Geophysical Research, 106, 8871–8886.
    [Google Scholar]
  4. Drachev, S.S.
    2002. On the basement tectonics of the Laptev Sea Shelf. Geotectonics, 36, 483–498.
    [Google Scholar]
  5. 2011. Tectonic setting, structure and petroleum geology of the Siberian Arctic offshore sedimentary basins. In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sørensen, K. (eds) Arctic Petroleum Geology. Geological Society, London, Memoirs, 35, 369–394, https://doi.org/10.1144/M35.25
    [Google Scholar]
  6. 2016. Fold belts and sedimentary basins of the Eurasian Arctic. Arktos, 2, 21, https://doi.org/10.1007/s41063-015-0014-8
    [Google Scholar]
  7. Drachev, S.S. & Savostin, L.A.
    1994. Structure and plate tectonics of the Laptev Sea Shelf: drilling of the geological record. In: Kassens, H., Hubberten, H.W., Pryamikov, S. & Stein, R. (eds) Russian–German Cooperation in the Siberian Shelf Seas: Geo-System Laptev Sea. Reports on Polar Research, 144. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, 115–117.
    [Google Scholar]
  8. Drachev, S.S. & Shkarubo, S.I.
    2017. Tectonics of the Laptev Shelf, Siberian Arctic. In: Pease, V. & Coakley, B. (eds) Circum-Arctic Lithosphere Evolution. Geological Society, London, Special Publications, 460. First published online 13 June 2017, https://doi.org/10.1144/SP460.15
    [Google Scholar]
  9. Drachev, S.S., Savostin, L.A., Groshev, V.G. & Bruni, I.E.
    1998. Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic. Tectonophysics, 298, 357–393.
    [Google Scholar]
  10. Fairhead, J.D., Green, C.M. & Fletcher, K.M.U.
    2004. Hydrocarbon screening of the deep continental margins using non-seismic methods. First Break, 22, 59–63.
    [Google Scholar]
  11. Franke, D.
    2013. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87.
    [Google Scholar]
  12. Franke, D. & Hinz, K.
    2009. Geology of the shelves surrounding the New Siberian Islands, Russian Arctic. In: Stone, D.B., Fujita, K., Layer, P.W., Miller, E.L., Prokopiev, A.V. & Toro, J. (eds) Geology, Geophysics and Tectonics of Northeastern Russia: A Tribute to Leonid Parfenov. Stephan Mueller Special Publication Series, 4, 35–44.
    [Google Scholar]
  13. Franke, D., Hinz, K. et al.
    2000. Tectonics of the Laptev Sea region in north-eastern Siberia. In: Roland, N.W. & Tessensohn, F. (eds) Third International Conference on Arctic Margins. Polarforschung, 68, 51–58.
    [Google Scholar]
  14. Franke, D., Hinz, K. & Oncken, O.
    2001. The Laptev Sea Rift. Marine and Petroleum Geology, 18, 1083–1127.
    [Google Scholar]
  15. Gaina, C., Roest, W.R. & Müller, R.D.
    2002. Late Cretaceous–Cenozoic deformation of northeast Asia. Earth and Planetary Science Letters, 197, 273–286.
    [Google Scholar]
  16. Glebovsky, V.Y., Kaminsky, V.D., Minakov, A.N., Merkur'ev, S.A., Childers, V.A. & Brozena, J.M.
    2006. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics, 40, 263–281.
    [Google Scholar]
  17. Grachev, A.F.
    1982. Geodynamics of the transitional zone from the Moma Rift to the Gakkel Ridge. In: Watkins, J.S. & Drake, C.L. (eds) Studies in Continental Margin Geology. American Association of Petroleum Geologists, Memoirs, 34, 103–113.
    [Google Scholar]
  18. Green, C.M. & Fairhead, J.D.
    1996. New 5′×5′ digital gravity and terrain models of the Earth. In: Rapp, R.H., Casenave, A.A. & Nerem, R.S. (eds) Global Gravity Field and its Temporal Variations. IAG Symposia, 116. Springer, Berlin, 227–235.
    [Google Scholar]
  19. Grinenko, O. V.
    (ed.) 1989. Palaeogene and Neogene of North-East of the USSR. Scientific Centre of Siberian Department of Academy of Sciences of USSR, Yakutsk[in Russian].
    [Google Scholar]
  20. Ivanova, N.M., Sekretov, S.B. & Shkarubo, S.I.
    1990. Geological structure of the Laptev Sea shelf according to seismic studies. Oceanology, 29, 600–604.
    [Google Scholar]
  21. Karasik, A.M.
    1968. Magnetic anomalies of the Gakkel Ridge and the origin of the Eurasian Subbasin of the Arctic Ocean. Geophysical Survey Methods in the Arctic, 5, 8–19[in Russian].
    [Google Scholar]
  22. 1974. The Eurasia Basin of the Arctic Ocean from the point of view of plate tectonic. In: Gaponenko, G.I., Demenitskaya, R.M. et al. (eds) Problems in Geology of Polar Areas of the Earth. Nauchno-Issledovatel'skii Institut Geologii Arktiki, Leningrad, 23–31[in Russian].
    [Google Scholar]
  23. Kenyon, S., Forsberg, R. & Coakley, B.
    2008. New gravity field for the Arctic. Eos, Transactions of the American Geophysical Union, 89, 289–290, https://doi.org/10.1029/2008EO320002
    [Google Scholar]
  24. Kholodov, A.L., Romanovskii, N.N., Gavrilov, A.V., Tipenko, G.S., Drachev, S.S., Hubberten, H.W. & Kassens, H.
    2001. Modelling of the offshore permafrost thicknеss on the Laptev Sea shelf. Polarforschung, 69, 221–228.
    [Google Scholar]
  25. Kos'ko, M.K., Sobolev, N.N., Korago, E.A., Proskurnin, V.F. & Stolbov, N.M.
    2013. Geology of Novosibirskian Islands – a basis for interpretation of geophysical data on the Eastern Arctic shelf of Russia. Neftegazovaya Geologiya. Teoriya I Praktika, 8, 1–36[in Russian].
    [Google Scholar]
  26. Lavier, L.L. & Manatschal, G.
    2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440, 324–328.
    [Google Scholar]
  27. Ludwig, W.J., Nafe, J.E. & Drake, C.L.
    1970. Seismic refraction. In: Maxwell, A.E. (ed.) The Sea, Vol. 4. Wiley-Interscience, New York, 53–84.
    [Google Scholar]
  28. Manatschal, G., Sutra, E. & Péron-Pinvidic, G.
    2010. The lesson from the Iberia–Newfoundland rifted margins: how applicable is it to other rifted margins?In: Proceedings of the II Central & North Atlantic Conjugate Margins Conference, Lisbon, Volume II. Método Directo, Lisbon, 27–37, http://metododirecto.pt/CM2010
    [Google Scholar]
  29. Mazur, S., Green, C., Stewart, M.G., Whittaker, J.M., Williams, S. & Bouatmani, R.
    2012. Displacement along the Red River Fault constrained by extension estimates and plate reconstructions. Tectonics, 31, TC5008, https://doi.org/10.1029/2012TC003174
    [Google Scholar]
  30. Mazur, S., Campbell, S., Green, C. & Bouatmani, R.
    2015. Extension across the Laptev Sea continental rifts constrained by gravity modeling. Tectonics, 34, 435–448, https://doi.org/10.1002/2014TC003590
    [Google Scholar]
  31. Péron-Pinvidic, G. & Manatschal, G.
    2010. From microcontinents to extensional allochthons: witnesses of how continents break apart?Petroleum Geoscience, 16, 189–197, https://doi.org/10.1144/1354-079309-903
    [Google Scholar]
  32. Prokopiev, A.
    2013. Structure and Late Mesozoic–Early Cenozoic evolution of the Verkhoyansk and Olenek fold belts (Laptev Sea shore) Junction Z. AAPG Search and Discovery Article 90177 presented at theArctic, Polar Petroleum Potential Conference & Exhibition, Stavanger, Norway, October 15–18, 2013.
    [Google Scholar]
  33. Sakoulina, T.S., Verba, M.L., KabushinaT.B., Krupnova, N.A., Tabyrtsa, S.N. & Ivanov, G.I.
    2011. Integrated geological–geophysical investigations along a reference line 5-AR in the East Siberian Sea. Razvedka I okhrana nedr, 10, 17–23. [in Russian].
    [Google Scholar]
  34. Savostin, L.A. & Karasik, A.M.
    1981. Recent plate tectonics of the Arctic basin and of northeastern Asia. Tectonophysics, 74, 111–145.
    [Google Scholar]
  35. Sekretov, S.B.
    2000. Petroleum potential of the Laptev Sea basins: Geological, tectonic and geodynamic factors. In: Roland, N.W. & Tessensohn, F. (eds) Third International Conference on Arctic Margins. Polarforschung, 68, 179–186.
    [Google Scholar]
  36. Shkarubo, S.I. & Zavarzina, G.A.
    2011. Stratigraphic characteristics of seismic sequences in the sedimentary cover of the western Laptev Sea shelf. Neftegazovaya Geologiya. Teoriya i Praktika, 6, 1–21[in Russian].
    [Google Scholar]
  37. Shkarubo, S.I., Zavarzina, G.A. & Zuikova, O.N.
    2014. Results of modern stage of the Laptev Sea shelf study: From hypotheses to new facts and challenges. Okhrana i Razvedka Nedr, 4, 23–30[in Russian].
    [Google Scholar]
  38. Sokolov, S.D.
    2010. Tectonics of northeast Asia: An overview. Geotectonics, 44, 493–509.
    [Google Scholar]
  39. Talwani, M. & Ewing, M.
    1960. Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape. Geophysics, 25, 203–225.
    [Google Scholar]
  40. Van Wijk, J.W. & Blackman, D.K.
    2005. Dynamics of continental rift propagation: the end-member modes. Earth and Planetary Science Letters, 229, 247–258.
    [Google Scholar]
  41. Whitmarsh, R.B., Manatschal, G. & Minshull, T.A.
    2001. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413, 150–154.
    [Google Scholar]
  42. Zavarzina, G.A., Shkarubo, S.I., Shlykova, V.V. & Poshtatskaya, A.G.
    2014. New data on tectonics of the Pritaimyr Shelf, Laptev Sea. Okhrana i Razvedka Nedr, 4, 31–34[in Russian].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-143
Loading
/content/journals/10.1144/petgeo2016-143
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error