1887
Volume 24, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Rifted margins are commonly classified as either magma-rich or magma-poor. Magma-poor margins are often implicitly related to ultraslow–slow extension. Conversely, therefore, magma-rich margins should represent more rapid extension. Although supported by numerical modelling, these relationships are based on limited data and depend on a perhaps spurious comparison between continental margins and spreading ridges. Three case studies from the Atlantic margins are therefore presented here as a local, by no means complete, examination of this concept.

Extension rates for magma-poor margins are mainly derived from offshore Iberia, while the best documented rates on magma-rich margins are probably those in the NE Atlantic. Particularly for the NE Atlantic, there is a dependence on the initial oceanic spreading rate as pre-break-up rates are very difficult to quantify. Our two southerly examples, the Central Atlantic and southern South Atlantic, are both magma-rich in parts and have been described as opening during ultraslow–slow plate separation. Both would therefore seem to contradict the positive ‘rate-magmatism’ correlation. However, on closer examination, a wide range of initial extension rates are actually possible. This is largely due to poor constraints on break-up ages. The assumption that break-up is synchronous with flood basalt extrusion is flawed, and may have caused initial extension rates to have been significantly underestimated. Additionally, averaging between widely spaced oceanic magnetic anomalies allows for a wide range of extension rates. New, well-constrained ages and event chronologies from critical areas of conjugate margins are needed to determine whether this relationship has global validity.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-158
2017-09-29
2024-04-20
Loading full text...

Full text loading...

References

  1. Abreu, V.S., Vail, P.R., Bally, A. & Wilson, E.
    1997. Geologic evolution of conjugate volcanic passive margins; influence on the petroleum systems of the South Atlantic. Houston Geological Society Bulletin, 40, 10–11.
    [Google Scholar]
  2. Benson, R.N.
    2003. Age estimates of the seaward-dipping volcanic wedge, earliest oceanic crust, and earliest drift-stage sediments along the North American Atlantic continental margin. In: Hames, W., McHone, J., Renne, P. & Ruppel, C. (eds) The Central Atlantic Magmatic Province: Insights from Fragmentation of Pangea. American Geophysical Union, Geophysical Monograph, 136, 61–75, https://doi.org/10.1029/136GM04
    [Google Scholar]
  3. Biari, Y., Klingelhoefer, F. et al.
    2015. Deep crustal structure of the north-west African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey). Tectonophysics, 656, 154–174, https://doi.org/10.1016/j.tecto.2015.06.019
    [Google Scholar]
  4. 2017. Opening of the central Atlantic Ocean: Implications for geometric rifting and asymmetric initial seafloor spreading after continental breakup. Tectonics, 36, 1129–1150, https://doi.org/10.1002/2017TC004596
    [Google Scholar]
  5. Blischke, A., Gaina, C. et al.
    2016. The Jan Mayen microcontinent (JMMC): an update of its architecture, structural development, and role during the rift transition from the Ægir Ridge to the Kolbeinsey Ridge. In: Péron-Pinvidic, G., Hopper, J.R., Stoker, M.S., Gaina, C., Doornenbal, J.C., Funck, T. & Arting, U.E. (eds) The NE Atlantic Region: A Reappraisal of Crustal Structure, Tectonostratigraphy and Magmatic Evolution. Geological Society, London, Special Publications, 447, 299–337, https://doi.org/10.1144/SP447.5
    [Google Scholar]
  6. Bown, J.W. & White, R.S.
    1995. Effect of finite extension rate on melt generation at rifted continental margins. Journal of Geophysical Research, 100, 18 011–18 029.
    [Google Scholar]
  7. Brune, S., Heine, C., Pérez-Gussinyé, M. & Sobolev, S.V.
    2014. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications, 5, 4014, https://doi.org/10.1038/ncomms5014
    [Google Scholar]
  8. Brune, S., Williams, S.E., Butterworth, N.P. & Müller, R.D.
    2016. Abrupt plate accelerations shape rifted continental margins. Nature, 536, 201–204, https://doi.org/10.1038/nature18319
    [Google Scholar]
  9. Cannat, M., Sauter, D. et al.
    2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34, 605–608, https://doi.org/10.1130/G22486.1
    [Google Scholar]
  10. Chian, D., Louden, K.E. & Reid, I.
    1995. Crustal structure of the Labrador Sea conjugate margin and implications for the formation of nonvolcanic continental margins. Journal of Geophysical Research, 100, 24 239–24 253.
    [Google Scholar]
  11. Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.-X.
    2014. The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204.
    [Google Scholar]
  12. Contrucci, I., Klingelhofer, F. et al.
    2004. The crustal structure of the NW Moroccan continental margin from wide-angle and reflection seismic data. Geophysical Journal International, 159, 117–128.
    [Google Scholar]
  13. Courtillot, V., Jaupart, C., Manighetti, I., Tapponier, P. & Besse, J.
    1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166, 177–195.
    [Google Scholar]
  14. Davison, I. & Dailly, P.
    2010. Salt tectonics in the Cap Boujdour Area, Aaiun Basin, NW Africa. Marine and Petroleum Geology, 27, 435–441, https://doi.org/10.1016/j.marpetgeo.2009.10.011
    [Google Scholar]
  15. Deptuck, M. & Kendell, K.L.
    2017. A review of Mesozoic–Cenozoic salt tectonics along the Scotian Margin, eastern Canada. In: Soto, J.I., Flinch, J. & Tari, G. (eds) Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, Tectonics and Hydrocarbon Potential. Elsevier, Amsterdam, 287–312.
    [Google Scholar]
  16. Direen, N.G., Stagg, H.M.J., Symonds, P.A. & Colwell, J.B.
    2011. Dominant symmetry of a conjugate southern Australian and East Antarctic magma-poor rifted margin segment. Geochemistry, Geophysics, Geosystems, 12, Q02006, https://doi.org/10.1029/2010GC003306
    [Google Scholar]
  17. Doré, A.G. & Lundin, E.R.
    2015. Hyperextended continental margins – Knowns and unknowns. Geology, 43, 95–96, https://doi.org/10.1130/focus012015.1
    [Google Scholar]
  18. Eldholm, O. & Grue, K.
    1994. North Atlantic volcanic margins: Dimensions and production rates. Journal of Geophysical Research, 99, 2955–2968.
    [Google Scholar]
  19. Eldholm, O., Thiede, J. et al.
    1989. Evolution of the Vøring volcanic margin. In: Eldholm, O., Thiede, J. et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Volume 104. Ocean Drilling Program, College Station, TX, 1033–1065.
    [Google Scholar]
  20. Franke, D., Ladage, S., Schnabel, M., Schreckenberger, B., Reichert, C., Hinz, K., Paterlini, M., de Abelleyra, J. & Siciliano, M.
    2010. Birth of a volcanic margin off Argentina, South Atlantic. Geochemistry Geophysics Geosystems, 11, Q0AB04, https://doi.org/10.1029/2009GC002715
    [Google Scholar]
  21. Franke, D.
    2013. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87, http://doi.org/10.1016/j.marpetgeo.2012.11.003
    [Google Scholar]
  22. Funck, T., Jackson, H.R., Louden, K.E., Dehler, S.A. & Wu, Y.
    2004. Crustal structure of the northern Nova Scotia rifted continental margin (eastern Canada). Journal of Geophysical Research, 109, B09102, https://doi.org/10.1029/2004JB003008
    [Google Scholar]
  23. Gaina, C., Gernigon, L. & Ball, P.
    2009. Palaeocene–Recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. Journal of the Geological Society, London, 166, 601–616, https://doi.org/10.1144/0016-76492008-112
    [Google Scholar]
  24. Gaina, C., Nasuti, A., Kimbell, G.S. & Blitschke, A.
    2017. Break-up and seafloor spreading domains in the NE Atlantic. In: Péron-Pinvidic, G., Hopper, J.R., Stoker, M.S., Gaina, C., Doornenbal, J.C., Funck, T. & Arting, U.E. (eds) The NE Atlantic Region: A Reappraisal of Crustal Structure, Tectonostratigraphy and Magmatic Evolution. Geological Society, London, Special Publications, 447, 393–417, https://doi.org/10.1144/SP447.12
    [Google Scholar]
  25. Gernigon, L., Olesen, O., Ebbing, J., Wienecke, S., Gaina, C., Mogaard, J.O., Sand, M. & Myklebust, R.
    2009. Geophysical insights and early spreading history in the vicinity of the Jan Mayen Fracture Zone, Norwegian–Greenland Sea. Tectonophysics, 468, 185–205.
    [Google Scholar]
  26. Gernigon, L., A.Blischke, A.Nasuti & M.Sand
    . 2015. Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high-resolution aeromagnetic surveys in the Norway Basin. Tectonics, 34, 2–27, https://doi.org/10.1002/2014TC003717
    [Google Scholar]
  27. Glebovsky, V.Y., Kaminsky, V.D., Minakov, A.N., Merkur'ev, S.A., Childers, V.A. & Brozena, J.M.
    2006. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics, 40, 263–281.
    [Google Scholar]
  28. Gradstein, F., Ogg, J. & Smith, A.
    2004. A Geologic Time Scale. Cambridge University Press, New York.
    [Google Scholar]
  29. Gradstein, F., Ogg, J.G., Schmitz, M.D. & Ogg, G.M.
    (eds). 2012. The Geologic Time Scale 2012. Elsevier, Amsterdam.
    [Google Scholar]
  30. Greenhaulgh, E. & Kuznir, N.J.
    2007. Evidence for thin oceanic crust on the extinct Aegir Ridge, Norwegian Basin, NE Atlantic derived from satellite gravity inversion. Geophysical Research Letters, 34, L06305, https://doi.org/10.1029/2007GL029440
    [Google Scholar]
  31. Heine, C., Zoethout, J. & Müller, R.D.
    2013. Kinematics of the South Atlantic rift. Solid Earth, 4, 215–253.
    [Google Scholar]
  32. Hinz, K.
    1981. A hypothesis on terrestrial catastrophes: Wedges of very thick oceanward dipping layers beneath passive margins – their origin and paleoenvironmental significance. Geologisches Jahrbuch, 22, 3–28.
    [Google Scholar]
  33. Holbrook, S.W., Reiter, E.C. et al.
    1994. Deep structure of the U.S. Atlantic continental margin, offshore South Carolina, from coincident ocean bottom and multichannel seismic data. Journal of Geophysical Research, 99, 9155–9178.
    [Google Scholar]
  34. Hsu, S.-K., Yeh, Y.-C., Doo, W.-B. & Tsai, C.-H.
    2004. New bathymetry and magnetic lineations identifications in the Northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25, 29–44.
    [Google Scholar]
  35. Karner, G.D., Johnson, C.A., Mohn, G. & Manatschal, G.
    2012. Depositional environments and source distribution across hyperextended rifted margins of the North Atlantic: Insights from the Iberia–Newfoundland margin. In: Third Central & North Atlantic Conjugate Margins Conference, 22–24 August 2012, Trinity College, Dublin, 7–17.
    [Google Scholar]
  36. Keen, C.E., Potter, P. & Srivastava, S.P.
    1994. Deep seismic reflection data across the conjugate margins of the Labrador Sea. Canadian Journal of Earth Science, 31, 192–205.
    [Google Scholar]
  37. King, S.D. & Anderson, D.L.
    1998. Edge-driven convection. Earth and Planetary Science Letters, 160, 289–296.
    [Google Scholar]
  38. Klingelhoefer, F., Labails, C. et al.
    2009. Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the DAKHLA experiment) Part A: Wide-angle seismic models. Tectonophysics, 468, 63–82.
    [Google Scholar]
  39. Klitgord, K.D. & Schouten, H.
    1986. Plate kinematics of the Central Atlantic. In: Vogt, P.R. & Tucholke, B.E. (eds) The Western North Atlantic Region. Geological Society of America, Geology of North America,M. Geological Society of America, Boulder, Colorado, 351–378.
    [Google Scholar]
  40. Kneller, E.A. & Johnson, C.A.
    2011. Plate kinematics of the Gulf of Mexico based on integrated observations from the Central and South Atlantic. Gulf Coast Association of Geological Societies Transactions, 61, 283–299.
    [Google Scholar]
  41. Koopmann, H., Franke, D., Schreckenberger, B., Schulz, H., Hartwig, A., Stollhofen, H. & di Primo, R.
    2014. Segmentation and volcano-tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data. Marine and Petroleum Geology, 50, 22–39.
    [Google Scholar]
  42. Labails, C., Olivet, J.L. & the Dakhla Study Group
    . 2009. Crustal structure of the SW Moroccan margin from wide-angle and reflection seismic data (the Dakhla experiment); Part B, The tectonic heritage. Tectonophysics, 468, 83–97.
    [Google Scholar]
  43. Lanphere, M.A.
    1983. 40Ar/39Ar ages of basalt from Clubhouse Crossroads test hole #2, near Charleston, South Carolina. In: Gohn, G.S. (ed.) Studies Related to the Charleston, South Carolina Earthquake of 1886 – Tectonics and Seismicity. United States Geological Survey, Professional Paper, 1313, B1–B8.
    [Google Scholar]
  44. Larsen, H.C., Dahl-Jensen, T. & Hopper, J.R.
    1989. Crustal structure along the Leg 152 drilling transect. In: Saunders, A.D., Larsen, H.C. & Wise, S.W., Jr (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Volume 152. Ocean Drilling Program, College Station, TX, 463–475.
    [Google Scholar]
  45. Larsen, H.-C. Saunders, H.C., Clift, P.D. & Shipboard scientific party
    1994. Introduction: Breakup of the Southeast Greenland margin and the formation of the Irminger Basin: background and scientific objectives. Proceedings of the Ocean Drilling Program Initial Reports, College Station, TX: Ocean Drilling Program, 152, 5–16.
    [Google Scholar]
  46. Le Breton, E. Cobbold, P.R., Dauteuil, O. & Lewis, G.
    2013. Variations in amount and direction of seafloor spreading along the northeast Atlantic Ocean and resulting deformation of the continental margin of northwest Europe. Tectonics, 31, TC5006, https://doi.org/10.1029/2011TC003087
    [Google Scholar]
  47. Lundin, E.R., Redfield, T.F. & Péron-Pinvidic, G.
    2014. Rifted continental margins: Geometric influence on crustal architecture and melting. In: Pindell, J., Horn, B. et al. (eds) Sedimentary Basins: Origin, Depositional Histories and Petroleum Systems – 33rd Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference. Gulf Coast Section SEPM(GCSSEPM), Houston,TX, 26–28.
    [Google Scholar]
  48. Manatschal, G.
    2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93, 432–466, https://doi.org/10.1007/s00531-004-0394-7
    [Google Scholar]
  49. Manatschal, G., Froitzheim, N., Rubenach, M. & Turrin, B.D.
    2001. The role of detachment faulting in the formation of an ocean–continent transition; insights from the Iberia Abyssal Plain. In: Wilson, R.C.L., Whitmarsh, R.B, Taylor, B. & Froitzheim, N. (eds) Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea. Geological Society, London, Special Publications, 187, 405–428, https://doi.org/10.1144/GSL.SP.2001.187.01.20
    [Google Scholar]
  50. Mjelde, R., Raum, T., Breivik, A.J. & Faleide, J.I.
    2008. Crustal transect across the North Atlantic. Marine Geophysical Researches, 29, 73–87, https://doi.org/10.1007/s11001-008-9046-9
    [Google Scholar]
  51. Mohn, G., Karner, G., Manatchal, G. & Johnson, C.A.
    2015. Structural and stratigraphic evolution of the Iberia–Newfoundland hyper-extended rifted margin: A quantitative modelling approach. In: Gibson, G.M., Roure, F. and Manatschal, G. (eds) Sedimentary Basins and Crustal Processes at Continental Margins: From Modern Hyper-Extended Margins to Deformed Ancient Analogues. Geological Society, London, Special Publications, 413, 53–89, https://doi.org/10.1144/SP413.9
    [Google Scholar]
  52. Mohriak, W.U. & LeRoy, S.
    2012. Architecture of rifted continental margins and break-up evolution: insights from the South Atlantic, North Atlantic and Red Sea–Gulf of Aden conjugate margins. In: Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemčok, M. & Sinha, S.T. (eds) Conjugate Divergent Margins. Geological Society, London, Special Publications, 369, 497–535, https://doi.org/10.1144/SP369.17
    [Google Scholar]
  53. Molnar, N.E., Cruden, A.R. & Betts, P.G.
    2018. Unzipping continents and the birth of microcontinents. Geology, 46, 183–86, https://doi.org/10.1130/G40021.1
    [Google Scholar]
  54. Mosar, J., Lewis, G. & Torsvik, T.H.
    2002. North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea. Journal of the Geological Society, London, 159, 503–515, https://doi.org/10.1144/0016-764901-135
    [Google Scholar]
  55. Moulin, M., Aslanian, D. & Unternehr, P.
    2010. A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 98, 1–37.
    [Google Scholar]
  56. Müller, R.D., Gaina, C., Roest, W.R. & Lundbek Hansen, D.
    2001. A recipe for microcontinent formation. Geology, 29, 203–206, https://doi.org/10.1130/0091-7613(2001)029<0203:ARFMF>2.0.CO;2
    [Google Scholar]
  57. Müntener, O., Manatschal, G., Desmurs, L. & Pettke, T.
    2010. Plagioclase peridotites in ocean-continent transitions: Refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. Journal of Petrology, 51, 255–294, https://doi.org/10.1093/petrology/egp087
    [Google Scholar]
  58. Mutter, J.C.
    1993. Margins declassified. Nature, 364, 393–394.
    [Google Scholar]
  59. Mutter, J.C., Talwani, M. & Stoffa, P.L.
    1984. Evidence for a thick oceanic crust adjacent to the Norwegian margin. Journal of Geophysical Research, 89, 483–502.
    [Google Scholar]
  60. Mutter, J.C., Buck, R.W. & Zehnder, C.M.
    1988. Convective partial melting. 1. A model for the formation of thick basaltic sequences during the initiation of spreading. Journal of Geophysical Research, 93, 1031–1048.
    [Google Scholar]
  61. Nemčok, M.
    2016. Rifts and passive margins: Structural, Architecture, Thermal Regimes, and Petroleum Systems. Cambridge University Press, New York.
    [Google Scholar]
  62. Nemčok, M., Stuart, C. et al.
    2012. Continental break-up mechanism; lessons from intermediate- and fast-extension settings. In: Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemčok, M. & Sinha, S.T. (eds) Conjugate Divergent Margins. Geological Society, London, Special Publications, 369, 373–401, https://doi.org/10.1144/SP369.14
    [Google Scholar]
  63. Nemčok, M., Sinha, S.T., Doré, A.G., Lundin, E.R., Mascle, J. & Rybar, S.
    2016. Mechanisms of microcontinent release associated with wrenching-involved continental break-up: a review. In: Nemčok, M., Rybár, S., Sinha, S.T., Hermeston, S.A. & Ledvényiová, L. (eds) Transform Margins: Development, Controls and Petroleum Systems. Geological Society, London, Special Publications, 431, 323–359, https://doi.org/10.1144/SP431.14
    [Google Scholar]
  64. Nomade, S., Knight, K.B. et al.
    2007. Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic rifting processes and the Triassic–Jurassic biotic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 326–344.
    [Google Scholar]
  65. Paton, D.A., Pindell, J., McDermott, K., Bellingham, P. & Horn, B.
    2017. Evolution of seaward-dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: Insights from the South Atlantic. Geology, 45, 439–442.
    [Google Scholar]
  66. Pérez-Gussinyé, M., Phipps Morgan, J., Reston, T.J. & Ranero, C.R.
    2006. The rift to drift transition at non-volcanic volcanic margins: Insights from numerical modeling. Earth and Planetary Science Letters, 44, 458–473.
    [Google Scholar]
  67. Péron-Pinvidic, G. & Manatschal, G.
    2009. The final rifting evolution at deep magma-poor passive margins from Iberia–Newfoundland: A new point of view. International Journal of Earth Science, 98, 1581–1597, https://doi.org/10.1007/s00531-008-0337-9
    [Google Scholar]
  68. Péron-Pinvidic, G., Shillington, D.J. & Tucholke, B.E.
    2010. Characterization of sills associated with the U reflection on the Newfoundland margin: evidence for widespread early post-rift magmatism on a magma-poor rifted margin. Geophysical Journal International, 182, 113–136.
    [Google Scholar]
  69. Péron-Pinvidic, G., Gernigon, L., Gaina, C. & Ball, P.
    2012. Insights from the Jan Mayen system in the Norwegian–Greenland Sea – I. Mapping of a microcontinent. Geophysical Journal International, 191, 385–412.
    [Google Scholar]
  70. Pindell, J., Graham, R. & Horn, B.
    2014. Role of magmatic evacuation in the production of SDR complexes at magma-rich passive margins. In: Pindell, J., Horn, B. et al. (eds) Sedimentary Basins: Origin, Depositional Histories and Petroleum Systems – 33rd Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference. Gulf Coast Section SEPM(GCSSEPM), Houston, TX.
    [Google Scholar]
  71. Planke, S., Alvestad, E. & Eldholm, O.
    1999. Seismic characteristics of basaltic extrusive and intrusive rocks. The Leading Edge, 18, 342–348.
    [Google Scholar]
  72. Rabinowitz, P.D. & Labrecque, J.
    1979. The Mesozoic South Atlantic Ocean and evolution of its continental margins. Journal of Geophysical Research, 84, 5973–6002.
    [Google Scholar]
  73. Reston, T.J.
    2009. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics, 468, 6–27.
    [Google Scholar]
  74. Roberts, D.G., Morton, A. & Backman, J.
    1984. Late Palaeocene–Eocene volcanic events in the Northern North Atlantic Ocean. In: Roberts, D.G. & Schnitker, D. et al. . (eds) Initial Reports of the Deep Sea Drilling Program, Volume 81. United States Government Printing Office, Washington, DC, 913–923.
    [Google Scholar]
  75. Sahabi, M., Aslanian, D. & Olivet, J.-L.
    2004. Un noveau point de départ pour l'historie del'Atlantique central [A new starting point for the history of the Central Atlantic]. Comptes Rendus Geoscience, 336, 1041–1052.
    [Google Scholar]
  76. Saunders, A.D., Fitton, J.G., Kerr, A.C., Norry, M.J. & Kent, R.W.
    1997. The North Atlantic Igneous Province. In: Mahoney, J.J. & Coffin, M.F. (eds) Large Igneous Provinces: Continental, Oceanic and Planetary. American Geophysical Union, Geophysical Monograph, 100, 45–93.
    [Google Scholar]
  77. Sayers, J., Symonds, P.A., Direen, N.G. & Bernardel, G.
    2001. Nature of the continent–ocean transition on the non-volcanic rifted margin of the central Great Australian Bight. In: Wilson, R.C.L., Whitmarsh, R.B., Taylor, B. & Froitzheim, N. (eds) Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence From Land and Sea. Geological Society, London, Special Publications, 187, 51–76, https://doi.org/10.1144/GSL.SP.2001.187.01.04
    [Google Scholar]
  78. Schettino, A. & Turco, E.
    2009. Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions. Geophysical Journal International, 178, 1078–1097, https://doi.org/10.1111/j.1365-246X.2009.04186.x
    [Google Scholar]
  79. Schlische, R.W., Withjack, M.O. & Olson, P.E.
    2003. Relative timing of CAMP, rifting, continental breakup, and basin inversion: tectonic significance. In: Hames, W., McHone, J., Renne, P. & Ruppel, C. (eds) The Central Atlantic Magmatic Province: Insights from Fragmentation of Pangea. American Geophysical Union, Geophysical Monograph, 136, 33–59, https://doi.org/10.1029/136GM03
    [Google Scholar]
  80. Schreckenberger, B., Hinz, K., Franke, D., Neben, S. & Roeser, H.A.
    2002. Marine magnetic anomalies and the symmetry of the conjugated rifted margins of the South Atlantic. In: American Geophysical Union, Fall Meeting, Supplement, T52C-1217.
    [Google Scholar]
  81. Seton, M., Müller, R.D. et al.
    2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113, 212–270.
    [Google Scholar]
  82. Sheridan, R.E., Gradstein, F.M., Barnard, L.A., Bliefnick, D.M., Habib, D., Jenden, P.D., Kagami, H., Keenan, E.M., Kostecki, J., Kvenvolden, K., Moullade, M., Ogg, J., Roth, P.H., Shipley, T. & Shipboard scientific party
    1980. Site 534: Blake-Bahama Basin. Initial reports DSDP 76, US Govt. Printing Office, 141–340.
    [Google Scholar]
  83. Shuck, B. & van Avendonk, H.
    2017. Seismic structure of the lithosphere in the ENAM area from wide-angle OBS data. Presented at theOcean Bottom Seismograph Instrument Pool (OBSIP) Symposium, 18–19 September 2017, Portland, Maine.
    [Google Scholar]
  84. Sibuet, J.-C., Srivastava, S.P. & Spakman, W.
    2004. Pyrenean orogeny and plate kinematics. Journal of Geophysical Research, 109, B08104, https://doi.org/10.1029/2003JB002514
    [Google Scholar]
  85. Sibuet, J.-C., Srivastava, S. & Manatschal, G.
    2007. Exhumed mantle-forming transitional crust in the Newfoundland–Iberia rift and associated magnetic anomalies. Journal of Geophysical Research, 112, B06105, http://doi.org/10.1029/2005JB003856
    [Google Scholar]
  86. Smallwood, J.R. & White, R.S.
    2002. Ridge–plume interaction in the North Atlantic and its influence on continental breakup and seafloor spreading. In: Jolley, D.W. & Bell, B.R. (eds) The North Atlantic Igneous Province: Stratigraphy, Tectonic, Volcanic and Magmatic Processes. Geological Society, London, Special Publications, 197, 15–37, https://doi.org/10.1144/GSL.SP.2002.197.01.02
    [Google Scholar]
  87. Steiner, C., Hobson, A., Favre, P., Stampfli, G.M. & Hernandez, J.
    1998. Mesozoic sequence of Fuerteventura (Canary Islands): Witness of Early Jurassic sea-floor spreading in the central Atlantic. GSA Bulletin, 110, 1304–1317.
    [Google Scholar]
  88. Stica, J.M., Zalán, P.D. & Ferrari, A.L.
    2014. The evolution of rifting on the volcanic margin of the Pelotas Basin and the contextualization of the Paraná-Etendeka LIP in the separation of Gondwana in the South Atlantic. Marine and Petroleum Geology, 50, 1–21, https://doi.org/10.1016/j.marpetgeo.2013.10.015
    [Google Scholar]
  89. Sutra, E., Manatschal, G., Mohn, G. & Unternehr, P.
    2013. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochemistry, Geophysics, Geosystems, 14, 2575–2597, https://doi.org/10.1002/ggge.20135
    [Google Scholar]
  90. Talwani, M. & Abreu, V.
    2000. Inferences regarding initiation of oceanic crust formation from the U.S. east coast margin and conjugate South Atlantic margins. In: Mohriak, W. & Taiwani, M. (eds) Atlantic Rifts and Continental Margins. American Geophysical Union, Geophysical Monograph, 115, 211–233.
    [Google Scholar]
  91. Talwani, M., Ewing, J., Sheridan, R.E., Holbrook, W.S. & Glover, L., III.
    1995. The EDGE experiment and the US Coast Magnetic anomaly. In: Banda, E., Talwani, M. & Tome, M. (eds) Rifted Ocean–Continent Boundaries. NATO ASI Series C, 463. Kluwer, Dordrecht, The Netherlands, 155–181.
    [Google Scholar]
  92. Talwani, M., Desa, M.A., Ismaiel, M. & Krishna, K.S.
    2016. The tectonic origin of the Bay of Bengal and Bangladesh. Tectonics, 121, 4836–4851, https://doi.org/10.1002/2015JB012734
    [Google Scholar]
  93. Tari, G. & Jabour, H.
    2017. Salt tectonics along the Atlantic margin of Morocco. In: Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemčok, M. & Sinha, S.T. (eds) Conjugate Divergent Margins. Geological Society, London, Special Publications, 369, 337–353, https://doi.org/10.1144/SP369.23
    [Google Scholar]
  94. Van Wijk, J.W., Huismans, R.S., ter Voorde, M. && Cloetingh, S.A.P.L.
    2001. Melt generation at volcanic continental margins: no need for a mantle plume? Geophysical Research Letters, 28, 399–3998.
    [Google Scholar]
  95. Verhoef, J., Roest, W.R., Macnab, R., Arkani-Hamed, J. & members of the Project Team
    1996. Magnetic Anomalies of the Arctic and North Atlantic Oceans and Adjacent Land Areas . Geological Survey of Canada Open File Report 3125, Parts a and b (CD-ROM and project report).
    [Google Scholar]
  96. Vogt, P.R.
    1973. Magnetic anomalies and crustal magnetization. In: Vogt, P.R. & Tucholke, B.E. (eds) The Western North Atlantic Region. Geological Society of America, Geology of North America,M. Geological Society of America, Boulder, Colorado, 229–256.
    [Google Scholar]
  97. Vogt, P.R., Anderson, C.N. & Bracey, D.R.
    1971. Mesozoic magnetic anomalies, sea-floor spreading and geomagnetic reversals in the southwestern North Atlantic. Journal of Geophysical Research, 76, 4796–4822.
    [Google Scholar]
  98. White, R.S., Spence, G.D., Fowler, S.R., McKenzie, D.P., Westbrook, G.K. & Bowen, A.N.
    1987. Magmatism at rifted continental margins. Nature, 330, 439–444.
    [Google Scholar]
  99. White, R.S. & McKenzie, D.P.
    1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94, 7685–7729.
    [Google Scholar]
  100. White, R.S. & Smith, L.K.
    2009. Crustal structure of the Hatton and the conjugate east Greenland rifted volcanic continental margins, NE Atlantic. Journal of Geophysical Research, 114, B02305, https://doi.org/10.1029/2008JB005856
    [Google Scholar]
  101. White, R.S., McKenzie, D. & O'Nions, K.R.
    1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research, 97, 19  683–19  715.
    [Google Scholar]
  102. Whitmarsh, R.B., Minshull, T.A., Russell, S.M., Dean, S.M., Louden, K.E. & Chian, D.
    2001. The role of syn-rift magnetism in the rift-to-drift evolution of the West Iberia continental margin: geophysical observations. In: Wilson, R.C.L., Whitmarsh, R.B., Taylor, B. & Froitzheim, N. (eds) Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence From Land and Sea. Geological Society, London, Special Publications, 187, 107–124, https://doi.org/10.1144/GSL.SP.2001.187.01.06
    [Google Scholar]
  103. Wickens, H.D.V. & Mclachlan, I.R.
    1990. The stratigraphy and sedimentology of the reservoir interval of the Kudu 9A-2 and 9A-3 boreholes. Geological Survey of Namibia Communications, 6, 9–23.
    [Google Scholar]
  104. Wiegel, W., Fluh, E.R. et al.
    1995. Investigations of the East Greenland continental margin between 70° and 72° N by deep seismic sounding and gravity studies. Marine Geophysical Researches, 17, 167–199.
    [Google Scholar]
  105. Wu, Y., Louden, K.E., Funck, T., Jackson, H.R. & Dehler, S.A.
    2006. Crustal structure of the central Nova Scotia margin off eastern Canada. Geophysical Journal International, 166, 878–906, https://doi.org/10.1111/j.1365-246X.2006.02991.x
    [Google Scholar]
  106. Zalán, P.V., Severino, M.d.C.G., Rigoti, C.A., Magnavita, L.P., Bach de Oliveira, J.A. & Viana, A.R.
    2011. 3D crustal architecture of a magma-poor passive margin, Santos, Camposand Espírito Santo Basins – Comparisons with a volcanic passive margin, Pelotas Basin – Offshore Brazil. AAPG Search and Discovery Article #30177.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-158
Loading
/content/journals/10.1144/petgeo2016-158
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error