1887
Volume 25, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Investigation of petroleum inclusions in carbonate samples from the Senilix well in the Barents Sea reveals petroleum entrapment in Paleozoic carbonates at reservoir temperatures from as low as 87.3°C to more than 130°C. Using corrected bottom hole temperatures, this corresponds to depths of 2800–4100 m, compared to the present-day depth of these samples of only 1965.9–2020.5 m. The oil in the Gohta and Alta discoveries is concluded to be of either Lower Triassic or Paleozoic origin based on the isomer distribution of triaromatic dimethylcholesteroids (TA-DMC). A potential source-rock candidate is the Ørret Formation, which is the time-equivalent to the Ravnefjeld Formation in Greenland. These oils are of a different origin compared to oils in the nearby Skrugard (renamed to Johan Castberg) discovery which contain oil sourced from the Upper Jurassic Hekkingen Formation. Evidence is presented to suggest that the Gohta and Alta oils represent blends of petroleum expelled at maturities ranging from about 1.0% calculated vitrinite reflectance (Rc) to more than 1.3%Rc, and this corroborates the inferences made from the petroleum inclusions. This emerging play is significant to exploration in the karst developed on the Barents Shelf and the Bjarmeland Platform during the Permo-Carboniferous. Karst reservoirs have been linked to eustatic sea-level changes, and analogous karst reservoirs may be present elsewhere in the Circum-Arctic: for example, in the Sverdrup Basin.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2017-085
2018-02-21
2020-09-26
Loading full text...

Full text loading...

References

  1. Astafev, V.P., Makhmudov, A.K. & Zhelonkin, A.I.
    1973. Significance of isobutene/butane ratios in hydrocarbon gases in searching for petroleum (according to Baltic and Belorussian data).Trudy Vsesoyuznogo Neftyanogo Nauchno-Issledovatel'skogo, Geologorazvedochnogo Instituta, 338, 35–38.
    [Google Scholar]
  2. Augustson, J.H.
    1993. A method on classification of oil traps based on heavy oil content in cores with relevance to filling and drainage of Barent Sea oil-bearing structures. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds) Arctic Geology and Petroleum Potential. Norwegian Petroleum Society, Special Publications, 2, 691–702.
    [Google Scholar]
  3. Bailey, N.J.L., Burwood, R. & Harriman, G.E.
    1990. Application of pyrolysate carbon isotope and biomarker technology to organofacies definition and oil correlation problems in North Sea basins. Organic Geochemistry, 16, 1157–1172.
    [Google Scholar]
  4. Barbanti, S.M., Moldowan, J.M., Watt, D.S. & Kolaczkowska, E.
    2011. New triaromatic steroids distinguish Paleozoic from Mesozoic oil. Organic Geochemistry, 42, 409–424.
    [Google Scholar]
  5. Beauchamp, B.
    1993. Carboniferous and Permian reefs of the Sverdrup Basin, Canadian Arctic Islands. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds) Arctic Geology and Petroleum Potential. Norwegian Petroleum Society, Special Publications , 2, 217–241.
    [Google Scholar]
  6. 2016. Back for more? The first Permian oil discovery in the Barents Sea has many analogues in the Sverdrup Basin, Arctic Canada. Abstract presented atPalaeozoic Plays of Northwest Europe, 26–27 May 2016, London.
    [Google Scholar]
  7. Bhullar, A.G., Karlsen, D.A., Backer-Owe, K., Seland, R.T. & Le Tran, K.
    1999. Dating reservoir filling—A case history from the North Sea. Marine and Petroleum Geology, 16, 581–603.
    [Google Scholar]
  8. Bodnar, R.J.
    1990. Petroleum migration in the Miocene Monterey Formation, California, USA: constraints from fluid-inclusion studies. Mineralogical Magazine, 54, 295–304.
    [Google Scholar]
  9. Bugge, T., Ringås, J.E., Leith, D.A., Mangerud, G., Weiss, H. & Leith, T.L.
    2002. Upper Permian as a new play model on the mid-Norwegian continental shelf: Investigated by shallow stratigraphic drilling. AAPG Bulletin, 86, 107–127.
    [Google Scholar]
  10. Cavanagh, A.J., Di Primio, R., Scheck-Wenderoth, M. & Horsfield, B.
    2006. Severity and timing of Cenozoic exhumation in the southwestern Barents Sea. Journal of the Geological Society, London, 163, 761–774, https://doi.org/10.1144/0016-76492005-146
    [Google Scholar]
  11. Christiansen, F.G., Piasecki, S., Stemmerik, L. & Telnæs, N.
    1993. Depositional environment and organic geochemistry of the Upper Permian Ravnefjeld Formation source rock in East Greenland. AAPG Bulletin, 77, 1519–1537.
    [Google Scholar]
  12. Connan, J.
    1981. Biological markers in crude oils. In: Mason, J.F. (ed.) Petroleum Geology in China. Penn Well, Tulsa, OK, USA, 48–70.
    [Google Scholar]
  13. Cornford, C., Needham, E.E.J. et al.
    1986. Geochemical habitat of North Sea oils and gases. In: Spencer, A.M. (ed.) Habitat of Hydrocarbons on the Norwegian Continental Shelf. Graham & Trotman, London, 39–54.
    [Google Scholar]
  14. Doré, A.G. & Jensen, L.N.
    1996. The impact of late Cenozoic uplift and erosion on hydrocarbon exploration: offshore Norway and some other uplifted basins. Global and Planetary Change, 12, 415–436.
    [Google Scholar]
  15. Ehrenberg, S.N., Nielsen, E.B., Svånå, T.A. & Stemmerik, L.
    1998. Depositional evolution of the Finnmark carbonate platform, Barents Sea: results from wells 7128/6-1 and 7128/4-1. Norsk Geologisk Tidsskrift, 78, 185–224.
    [Google Scholar]
  16. Gabrielsen, R.H., Færseth, R.B., Jensen, L.N., Kalheim, J.E. & Riis, F.
    1990. Structural Elements of the Norwegian Continental Shelf. Part I: The Barents Sea Region. Norwegian Petroleum Directorate Bulletin, 6.
    [Google Scholar]
  17. Goldstein, R.H. & Reynolds, T.J.
    1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM (Society for Sedimentary Geology), Short Course, 31.
    [Google Scholar]
  18. Green, P.F. & Duddy, I.R.
    2010. Synchronous exhumation events around the Arctic including examples from Barents Sea and Alaska North Slope. In: Vining, B.A. & Pickering, S.C. (eds) Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. Geological Society, London, 7, 633–644, https://doi.org/10.1144/0070633
    [Google Scholar]
  19. Gudlaugsson, S.T., Faleide, J.I., Johansen, S.E. & Breivik, A.J.
    1998. Late Palaeozoic structural development of the south-western Barents Sea. Marine and Petroleum Geology, 7, 234–252.
    [Google Scholar]
  20. Hanken, N.M., Bjørlykke, K. & Nielsen, J.K.
    2015. Subsurface water and fluid flow in sedimentary basins. In: Bjørlykke, K. (ed.) Petroleum Geoscience: From Sedimentary Environments to Rock Physics. Springer, Berlin, 151–216.
    [Google Scholar]
  21. Henriksen, E., Bjørnseth, H.M. et al.
    2011. Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems. In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sørensen, K. (eds) Arctic Petroleum Geology. Geological Society, London, Memoirs, 35, 271–281, https://doi.org/10.1144/M35.17
    [Google Scholar]
  22. Hunt, D., Elvebakk, G., Rafaelsen, B., Pajchel, J., Hogstad, K., Robak, H. & Randen, T.
    2003. Palaeokarst Recognition & 3D Distribution–New Insights from the Upper Palaeozoic, Loppa High, Barents Sea. Extended abstract presented at the65th EAGE Conference & Exhibition, 2–5 June 2003, Stavanger, Norway.
    [Google Scholar]
  23. Karlsen, D.A. & Larter, S.R.
    1991. Analysis of petroleum fractions by TLC-FID: applications to petroleum reservoir description. Organic Geochemistry, 17, 603–617.
    [Google Scholar]
  24. Karlsen, D.A. & Skeie, J.
    2006. Petroleum migration, faults and overpressure, part I: calibrating basin modelling using petroleum in traps—a review. Journal of Petroleum Geology, 29, 227–256.
    [Google Scholar]
  25. Karlsen, D.A., Nedkvitne, T., Larter, S.R. & Bjørlykke, K.
    1993. Hydrocarbon composition of authigenic inclusions: application to elucidation of petroleum reservoir filling history. Geochimica et Cosmochimica Acta, 57, 3641–3659.
    [Google Scholar]
  26. Karlsen, D.A., Nyland, B., Flood, B., Ohm, S.E., Brekke, T., Olsen, S. & Backer-Owe, K.
    1995. Petroleum geochemistry of the Haltenbanken, Norwegian continental shelf. In: Cubitt, J.M. & England, W.A. (eds) TheGeochemistry of Reservoirs. Geological Society, London, Special Publications, 86, 203–256, https://doi.org/10.1144/GSL.SP.1995.086.01.14
    [Google Scholar]
  27. Karlsen, D.A., Skeie, J.E. et al.
    2004. Petroleum migration, faults and overpressure. Part II. Case history: The Haltenbanken Petroleum Province, offshore Norway. In: Cubitt, J.M., England, W.A. & Larter, S. (eds) Understanding Petroleum Reservoirs: Towards an Integrated Reservoir Engineering and Geochemical Approach. Geological Society, London, Special Publications, 237, 305–372, https://doi.org/10.1144/GSL.SP.2004.237.01.18
    [Google Scholar]
  28. Kemp, S.J., Pearce, J.M. & Steadman, E.J.
    2002. Mineralogical, Geochemical and Petrographical Characterisation of Nordland Shale Cores from Well 15/9-A-11, Sleipner Field, Northern North Sea. British Geological Survey Report CR/02/313N. British Geological Survey, Keyworth, Nottingham, UK.
    [Google Scholar]
  29. Kvalheim, O.M., Christy, A.A., Telnæs, N. & Bjørseth, A.
    1987. Maturity determination of organic matter in coals using the methylphenanthrene distribution. Geochimica et Cosmochimica Acta, 51, 1883–1888.
    [Google Scholar]
  30. Larssen, G.B., Elvebakk, G., Henriksen, L.B., Kristensen, S.E., Nilsson, I., Samuelsberg, T.J. & Worsley, D.
    2002. Upper Palaeozoic Lithostratigraphy of the Southern Norwegian Barents Sea. Norwegian Petroleum Directorate Bulletin, 9.
    [Google Scholar]
  31. Larter, S. & Di Primio, R.
    2005. Effects of biodegradation on oil and gas field PVT properties and the origin of oil rimmed gas accumulations. Organic Geochemistry, 36, 299–310.
    [Google Scholar]
  32. Lerch, B., Karlsen, D.A., Matapour, Z., Seland, R. & Backer-Owe, K.
    2016. Organic geochemistry of Barents Sea petroleum: thermal maturity and alteration and mixing processes in oils and condensates. Journal of Petroleum Geology, 39, 125–147.
    [Google Scholar]
  33. Lowenstein, T.K.
    1988. Origin of depositional cycles in a Permian “saline giant”: The Salado (McNutt zone) evaporites of New Mexico and Texas. Bulletin of the Geological Society of America, 100, 592–608.
    [Google Scholar]
  34. Mackenzie, A.S.
    1984. Applications of biological markers in petroleum geochemistry. In: Brooks, J. & Welte, D.H. (eds) Advances in Petroleum Geochemistry, Volume 1. Academic Press, London, 115–214.
    [Google Scholar]
  35. Mackenzie, A.S., Patience, R.L., Maxwell, J.R., Vandenbroucke, M. & Durand, B.
    1980. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochimica et Cosmochimica Acta, 44, 1709–1721.
    [Google Scholar]
  36. Mackenzie, A.S., Maxwell, J.R., Coleman, M.L. & Deegan, C.E.
    1984. Biological marker and isotope studies of North Sea crude oils and sediments. In: Proceedings of the Eleventh World Petroleum Congress, Volume 2. Wiley & Sons, New York, 45–56.
    [Google Scholar]
  37. Mackenzie, A.S., Beaumont, C. et al.
    1985. The Aromatisation and Isomerisation of Hydrocarbons and the Thermal and Subsidence History of the Nova Scotia Margin. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 315, 203–232.
    [Google Scholar]
  38. Mango, F.D.
    1992. Transition metal catalysis in the generation of petroleum and natural gas. Geochimica et Cosmochimica Acta, 56, 553–555.
    [Google Scholar]
  39. Matapour, Z. & Karlsen, D.A.
    2017. Geochemical characteristics of the Skrugard oil discovery, Barents Sea, Arctic Norway: A ‘palaeo-biodegraded – gas reactivated’ hydrocarbon accumulation. Journal of Petroleum Geology, 40, 125–152.
    [Google Scholar]
  40. 2018. Ages of Norwegian oils and bitumen based on age-specific biomarkers. Petroleum Geoscience, 24, 92–101, https://doi.org/10.1144/petgeo2016-119
    [Google Scholar]
  41. Mazzullo, S.J., Wilhite, B.W. & Woolsey, I.W.
    2009. Petroleum reservoirs within a spiculite-dominated depositional sequence: Cowley Formation (Mississippian: Lower Carboniferous), south-central Kansas. AAPG Bulletin, 93, 1649–1689.
    [Google Scholar]
  42. Mello, M.R., Gaglianone, P.C., Brassell, S.C. & Maxwell, J.R.
    1988. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Marine and Petroleum Geology, 5, 205–223.
    [Google Scholar]
  43. Moldowan, J.M., Seifert, W.K. & Gallegos, E.J.
    1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69, 1255–1268.
    [Google Scholar]
  44. Moldowan, J.M., Fago, F.J. et al.
    1991. Rearranged hopanes in sediments and petroleum. Geochimica et Cosmochimica Acta, 55, 3333–3353.
    [Google Scholar]
  45. Nedkvitne, T., Karlsen, D.A., Bjørlykke, K. & Larter, S.R.
    1993. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea. Marine and Petroleum Geology, 10, 255–270.
    [Google Scholar]
  46. Ohm, S.E., Karlsen, D.A. & Austin, T.J.F.
    2008. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. AAPG Bulletin, 92, 1191–1223.
    [Google Scholar]
  47. Pedersen, J.H., Brunstad, H., Kristensen, T. & di Primio, R.
    2017. The 7120/1-3 Gohta oil discovery – Opening up a Permian petroleum system on the Loppa High, SW Barents Sea. Abstract presented at theInternational Meeting on Organic Geochemistry, 17–22 September 2017, Florence, Italy.
    [Google Scholar]
  48. Peters, K.E., Walters, C. & Moldowan, J.
    2005. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History. Cambridge University Press, Cambridge.
    [Google Scholar]
  49. Pironon, J.
    2004. Fluid inclusions in petroleum environments: analytical procedures for PTX reconstruction. Acta Petrologica Sinica, 20, 1333–1342.
    [Google Scholar]
  50. Radke, M.
    1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and Petroleum Geology, 5, 224–236.
    [Google Scholar]
  51. Radke, M., Welte, D.H. & Willsch, H.
    1982a. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochimica et Cosmochimica Acta, 46, 1–10.
    [Google Scholar]
  52. Radke, M., Willsch, H., Leythaeuser, D. & Teichmüller, M.
    1982b. Aromatic components of coal: relation of distribution pattern to rank. Geochimica et Cosmochimica Acta, 46, 1831–1848.
    [Google Scholar]
  53. Radke, M., Vriend, S.P. & Schaefer, R.G.
    2001. Geochemical characterization of lower Toarcian source rocks from NW Germany: Interpretation of aromatic and saturated hydrocarbons in relation to depositional environment and maturation effects. Journal of Petroleum Geology, 24, 287–307.
    [Google Scholar]
  54. Sales, J.K.
    1993. Closure vs. seal capacity – A fundamental control on the distribution of oil and gas. In: Doré, A.G., Augustson, J.H., Hermanrud, C., Stewart, D.J. & Sylta, Ø. (eds) Basin Modeling: Advances and Application. Norwegian Petroleum Society (NPF), Special Publications, 3, 399–414.
    [Google Scholar]
  55. 1997. Seal strength vs. trap closure – a fundamental control on the distribution of oil and gas. In: Surdam, R.C. (ed.) Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists, Memoirs, 67, 57–84.
    [Google Scholar]
  56. Seewald, J.S.
    2003. Organic–inorganic interactions in petroleum-producing sedimentary basins. Nature, 426, 327–333.
    [Google Scholar]
  57. Seifert, W.K. & Moldowan, J.M.
    1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42, 77–95.
    [Google Scholar]
  58. Stemmerik, L. & Worsley, D.
    2005. 30 years on – Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Norwegian Journal of Geology/Norsk Geologisk Forening, 85, 151–168.
    [Google Scholar]
  59. Stemmerik, L., Elvebakk, G. & Worsley, D.
    1999. Potential Upper Palaeozoic carbonate reservoirs on the Norwegian Arctic Shelf – application to exploration of the Loppa High. Petroleum Geoscience, 5, 173–187, https://doi.org/10.1144/petgeo.5.2.173
    [Google Scholar]
  60. Surlyk, F., Hurst, J.M., Piasecki, S., Rolle, F., Scholle, P.A., Stemmerik, L. & Thomsen, E.
    1986. The Permian of the western margin of the Greenland Sea – a future exploration target. In: Halbouty, M.T. (ed.) Future Petroleum Provinces of the World. American Association of Petroleum Geologists, Memoirs, 40, 629–659.
  61. Telnæs, N.
    1986. Oil-Source Rock Correlations in Well 7120/2-1. Report published on the Norwegian Petroleum Directorate FactPages.
    [Google Scholar]
  62. Vobes, S.J.
    1998. An organic geochemical study of oils and condensates from the Hammerfest, Southern Norwegian Barents Sea. Candidatus scientiarum thesis, Department of Geology, University of Oslo, Oslo, Norway.
    [Google Scholar]
  63. Walderhaug, O.
    1994. Precipitation rates for quartz cement in sandstones determined by fluid-inclusion microthermometry and temperature–history modeling. Journal of Sedimentary Research, 64, 324–333.
    [Google Scholar]
  64. Weiss, H.M., Wilhelms, A., Mills, N., Scotchmer, J., Hall, P.B., Lind, K. & Brekke, T.
    2000. NIGOGA – The Norwegian Industry Guide to Organic Geochemical Analyses [online]. Edition 4.0. Published byNorsk Hydro, Statoil, Geolab Nor, SINTEF Petroleum Research and the Norwegian Petroleum Directorate, Norway, http://www.npd.no/Global/Norsk/7-Rapportering/Bronner/nigoga4.pdf
    [Google Scholar]
  65. Wilhelms, A. & Larter, S.R.
    1994. Origin of tar mats in petroleum reservoirs. Part I: introduction and case studies. Marine and Petroleum Geology, 11, 418–441.
    [Google Scholar]
  66. 2004. Shaken but not always stirred. Impact of petroleum charge mixing on reservoir geochemistry. In: Cubitt, J.M., England, W.A. & Larter, S.R. (eds) Understanding Petroleum Reservoirs: Towards an Integrated Reservoir Engineering and Geochemical Approach. Geological Society, London, Special Publications, 237, 27–35, https://doi.org/10.1144/GSL.SP.2004.237.01.03
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2017-085
Loading
/content/journals/10.1144/petgeo2017-085
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error