1887
Volume 25, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The SW Barents Sea was subjected to significant uplift and erosion during the Cenozoic, processes that are believed to have had a significant impact on hydrocarbon maturation and migration in the area. The current study uses compaction of shale- and sand-dominated layers to make a map of net apparent erosion throughout the SW Barents Sea. The map shows regional trends consistent with deep-seated isostatic uplift of the crust in combination with glacial erosion as a driving mechanism for the erosion. We find increased erosion towards the north and decreased erosion towards the west, in the western Barents Sea. The trend of highest erosion has an axis stretching in a SE–NW orientation towards Svalbard. This indicates a major change in the crustal uplift pattern in the transition from the Norwegian mainland to the Barents Sea. The velocity inversion method used in this study combined with a two-baseline normal compaction trend model demonstrates a reliable procedure for accurate erosion estimations. It allows erosion estimates from layers with different lithologies to be integrated into a common interpretation and differences to be interpreted geologically: for example, an apparent facies change to a mixed sand–shale lithology, possibly with reservoir quality sands developed, in the Cretaceous on the Bjarmeland Platform.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-002
2018-12-06
2020-07-11
Loading full text...

Full text loading...

References

  1. Andreassen, K. & Winsborrow, M.
    2009. Signature of ice streaming in Bjørnøyrenna, Polar North Atlantic, through the Pleistocene and implications for ice-stream dynamics. Annals of Glaciology, 50, 17–26.
    [Google Scholar]
  2. Anell, I.A.M., Thybo, H. & Artemieva, I.
    2009. Cenozoic uplift and subsidence in the North Atlantic region: geological evidence revisited. Tectonophysics, 474, 78–105, https://doi.org/10.1016/j.tecto.2009.04.006
    [Google Scholar]
  3. Baig, I., Faleide, J.I., Jahren, J. & Mondol, N.H.
    2016. Cenozoic exhumation on the southwestern Barents Shelf: estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 73, 105–130.
    [Google Scholar]
  4. Bellwald, B., Planke, S., Piasecka, E.D., Matar, M.A. & Andreassen, K.
    2018. Ice-stream dynamics of the SW Barents Sea revealed by high-resolution 3D seismic imaging of glacial deposits in the Hoop area. Marine Geology, 402, 165–183, https://doi.org/10.1016/j.margeo.2018.03.002
    [Google Scholar]
  5. Cavanagh, A.J., di Primio, R., Scheck-Wenderoth, M. & Horsfield, B.
    2006. Severity and timing of Cenozoic exhumation in the southwestern Barents Sea. Journal of the Geological Society, London, 163, 761–774, https://doi.org/10.1144/0016-76492005-146
    [Google Scholar]
  6. Cochran, J.R. & Talwani, M.
    1978. Gravity anomalies, regional elevation, and the deep structure of the North Atlantic. Journal of Geophysical Research: Solid Earth, 83, 4907–4924.
    [Google Scholar]
  7. Dimakis, P., Braathen, B.I., Faleide, J.I., Elverhoi, A. & Gudlaugsson, S.T.
    1998. Cenozoic erosion and the preglacial uplift of the Svalbard–Barents Sea region. Tectonophysics, 300, 311–327.
    [Google Scholar]
  8. Doré, A.G. & Jensen, L.N.
    1996. The impact of late Cenozoic uplift and erosion on hydrocarbon exploration: offshore Norway and some other uplifted basins. Global and Planetary Change, 12, 415–436.
    [Google Scholar]
  9. Dræge, A., Duffaut, K., Wiik, T. & Hokstad, K.
    2014. Linking rock physics and basin history – Filling gaps between wells in frontier basins. The Leading Edge, 33, 240–246.
    [Google Scholar]
  10. Duran, E.R., di Primio, R., Anka, Z., Stoddart, D. & Horsfield, B.
    2013. 3D-basin modelling of the Hammerfest Basin (southwestern Barents Sea): A quantitative assessment of petroleum generation, migration and leakage. Marine and Petroleum Geology, 45, 281–303.
    [Google Scholar]
  11. Eidvin, T., Jansen, E. & Riis, F.
    1993. Chronology of Tertiary fan deposits off the western Barents Sea: implications for the uplift and erosion history of the Barents Shelf. Marine Geology, 112, 109–131.
    [Google Scholar]
  12. Eidvin, T., Goll, R.M., Grogan, P., Smelror, M. & Ulleberg, K.
    1998. The Pleistocene to Middle Eocene stratigraphy and geological evolution of the western Barents Sea continental margin at well site 7316/5-1 (Bjørnøya West area). Norsk Geologisk Tidsskrift, 78, 99–124.
    [Google Scholar]
  13. Faleide, J.I., Vagnes, E. & Gudlaugsson, S.T.
    1993. Late Mesozoic–Cenozoic evolution of the southwestern Barents Sea in a regional rift-shear tectonic setting. Marine and Petroleum Geology, 10, 186–214.
    [Google Scholar]
  14. Faleide, J.I., Solheim, A., Fiedler, A., Hjelstuen, B.O., Andersen, E.S. & Vanneste, K.
    1996. Late Cenozoic evolution of the western Barents Sea–Svalbard continental margin. Global Planetary Change, 12, 53–74.
    [Google Scholar]
  15. Faleide, J.I., Tsikalas, F. et al.
    2008. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–91.
    [Google Scholar]
  16. First Geo
    . 2017. Regional High Quality Velocity cube for the Barents Sea, Norwegian Sector. Unpublished commercially confidential database.
    [Google Scholar]
  17. Gabrielsen, R.H., Faerseth, R.B. & Jensen, L.N.
    1990. Structural Elements of the Norwegian Continental Shelf. Part 1: The Barents Sea Region. Norwegian Petroleum Directorate Bulletin, 6.
    [Google Scholar]
  18. Gardner, G.H.F., Gardner, L.W. & Gregory, A.R.
    1974. Formation velocity and density – diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780.
    [Google Scholar]
  19. Gateman, H. & Avseth, P.
    2016. Net uplift estimation using both sandstone modeling and shale trends, on the Horda Platform area in the Norwegian North Sea. In: SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, Tulsa, OK, 3288–3292.
    [Google Scholar]
  20. Gradstein, F.M., Anthonissen, E., Brunstad, H., Charnok, M., Hammer, O., Hellem, T. & Lervik, K.S.
    2010. Norwegian offshore stratigraphic lexicon (NORLEX). Newsletter on Stratigraphy, 44, 73–86.
    [Google Scholar]
  21. Green, P.F. & Duddy, I.R.
    2010. Synchronous exhumation events around the Arctic including examples from Barents Sea and Alaska North Slope. In: Vining, B. A. & Pickering, S. C. (eds) Petroleum Geology: from Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. Geological Society, London, 633–644, https://doi.org/10.1144/0070633
    [Google Scholar]
  22. Grundvåg, S.-A., Marin, D., Kairanov, B., Śliwińska, K.K., Nøhr-Hansen, H., Jelby, M.E., Escalona, A. & Olaussen, S.
    2017. The Lower Cretaceous succession of the northwestern Barents Shelf: onshore and offshore correlations. Marine and Petroleum Geology, 86, 834–857.
    [Google Scholar]
  23. Henriksen, E., Bjørnseth, H.M. et al.
    2011a. Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems. In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sorensen, K. (eds) Arctic Petroleum Geology. Geological Society, London, Memoirs, 35, 271–281, https://doi.org/10.1144/M35.17
    [Google Scholar]
  24. Henriksen, E., Ryseth, A.E., Larssen, G.B., Heide, T., Rønning, K., Sollid, K. & Stoupakova, A.V.
    2011b. Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sørensen, K. (eds) Arctic Petroleum Geology. Geological Society, London, Memoirs, 35, 163–195, https://doi.org/10.1144/M35.10
    [Google Scholar]
  25. Hubred, J.H. & Meisingset, I.
    2013. Passive margin play and prospect evaluation using regional depth seismic and inversion of seismic processing velocities. In: EAGE/AAPG Workshop on Basin-Margin Wedge Exploration Plays, Lisbon, Portugal, 20–22 November 2013. European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands, 30–32.
    [Google Scholar]
  26. Japsen, P.
    2000. Investigation of multi-phase erosion using reconstructed shale trends based on sonic data, Sole Pit axis, North Sea. Global Planetary Change, 24, 189–210.
    [Google Scholar]
  27. 2018. Sonic velocity of chalk, sandstone and marine shale controlled by effective stress: Velocity-depth anomalies as a proxy for vertical movements. Gondwana Research, 53, 145–158.
    [Google Scholar]
  28. Japsen, P., Mukerji, T. & Mavko, G.
    2007. Constraints on velocity–depth trends from rock physics models. Geophysical Prospecting, 55, 135–154.
    [Google Scholar]
  29. Johansen, F., Meisingset, I., Leven, J. & Coker, J
    . 2015. Geopressure variations within the North West Shelf from well analysis and the regional hiQbe™ velocity model. ASEG Extended Abstracts, 2015, 1–2.
    [Google Scholar]
  30. Johansen, N.S.
    2016. Regional net erosion estimations and implications for seismic AVO signatures in the western Barents Sea. MSc thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
    [Google Scholar]
  31. Knies, J., Matthiessen, J. et al.
    , 2009. The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy. Quaternary Science Reviews, 28, 812–829.
    [Google Scholar]
  32. Ktenas, D., Henriksen, E., Meisingset, I., Nielsen, J.K. & Andreassen, K.
    2017. Quantification of the magnitude of net erosion in the southwest Barents Sea using sonic logs and compaction trends in shales and sandstones. Marine and Petroleum Geology, 88, 826–844.
    [Google Scholar]
  33. Laberg, J.S., Andreassen, K. & Vorren, T.O.
    2012. Late Cenozoic erosion of the high latitude southwestern Barents Sea Shelf revisited. Geological Society of America Bulletin, 124, 77–88.
    [Google Scholar]
  34. Lasabuda, A., Laberg, J.S., Knutsen, S.M. & Safronova, P.
    2018. Cenozoic tectonostratigraphy and pre-glacial erosion: A mass-balance study of the northwestern Barents Sea margin, Norwegian Arctic. Journal of Geodynamics, 119, 149–166, https://doi.org/10.1016/j.jog.2018.03.004
    [Google Scholar]
  35. Marin, D., Escalona, A., Śliwińska, K.K., Nøhr-Hansen, H. & Mordasova, A.
    2017. Sequence stratigraphy and lateral variability of Lower Cretaceous clinoforms in the southwestern Barents Sea. AAPG Bulletin, 101, 1487–1517.
    [Google Scholar]
  36. Meisingset, I., Coker, J. & Leven, J.
    2017. Geo-pressure on the Australian North West Shelf. Presented at theFirst EAGE Workshop on Pore Pressure Prediction, 19–21 March 2017, Pau, France.
    [Google Scholar]
  37. Meisingset, I., Hubred, J. & Krasova, D.
    2018. High quality regional velocity modelling for depth conversion. Presented at theFirst EAGE/PESGB Workshop on Velocities, 22–23 February 2018, London, UK.
    [Google Scholar]
  38. Mukerji, T., Dutta, N., Prasad, M. & Dvorkin, J.
    2002. Seismic detection and estimation of overpressures, Part I: The rock physics basis. CSEG Recorder, 27, 34–57.
    [Google Scholar]
  39. Nielsen, J.K., Ktenas, D., Henriksen, E., Holm, D.H., Kaikas, E., Samu, L. & Samuelsberg, T.
    2015. Impact of ice ages and tectonic activity on the petroleum systems of the western Barents Sea. Presented at theAAPG 3P Arctic: The Polar Petroleum Potential Conference and Exhibition, 29 September–2 October 2015, Stavanger, Norway.
    [Google Scholar]
  40. NPD
    . 2016. Barents Sea Structural Elements Map. Norwegian Petroleum Directorate (NPD), Stavanger, Norway, http://gis.npd.no/factmaps/html_20/[last accessed January 2018].
    [Google Scholar]
  41. . 2017. Structural and Stratigraphic Overview of Barents Sea North. Norwegian Petroleum Directorate (NPD), Stavanger, Norway, http://www.npd.no/en/Publications[last accessed June 2018].
    [Google Scholar]
  42. Peikert, E.W.
    1985. Stratigraphic velocity interpretation: National Petroleum Reserve – Alaska. In: Berg, O.R. & Wolverton, D.G. (eds) Seismic Stratigraphy II: An integrated Approach to Hydrocarbon Exploration. AAPG Memoirs, 39, 7–36.
    [Google Scholar]
  43. Richardsen, G., Vorren, T. & Tørrudbaken, B.O.
    1993. Post-Early Cretaceous uplift and erosion in the southern Barents Sea: a discussion based on analysis of seismic interval velocities. Norsk Geologisk Tidsskrift, 73, 3–20.
    [Google Scholar]
  44. Riis, F. & Fjeldskaar, W.
    1992. On the magnitude of the late Tertiary and Quaternary erosion and its significance for the uplift of Scandinavia and the Barents Sea. In: Larsen, R.M., Brekke, H., Larsen, R.M. & Talleraas, E. (eds) Structural and Tectonic Modelling and its Application to Petroleum Geology. Norwegian Petroleum Society, Special Publications, 1, 163–165.
    [Google Scholar]
  45. Rønnevik, H. & Jacobsen, H.P.
    1984. Structural highs and basins in the western Barents Sea. In: Spencer, A.M. (ed.) Petroleum Geology of North European Margin. Norwegian Petroleum Society, Oslo, 98–107.
    [Google Scholar]
  46. Ryseth, A., Augustson, J.H. et al.
    , 2003. Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin, southwestern Barents Sea. Norsk Geologisk Tidsskrift, 83, 107–130.
    [Google Scholar]
  47. Schlumberger
    . 2009. Lithology–Wireline LWD: Sonic Tool. In: Schlumberger Log Interpretation Charts. Schlumberger, Sugar Land, TX, 212–213.
    [Google Scholar]
  48. Sclater, J.G. & Christie, P.A.
    1980. Continental stretching: An explanation of the post Mid-Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85, 3711–3739.
    [Google Scholar]
  49. Storvoll, V., Bjørlykke, K. & Mondol, N.H.
    2005. Velocity–depth trends in Mesozoic and Cenozoic sediments from the Norwegian Shelf. AAPG Bulletin, 89, 359–381.
    [Google Scholar]
  50. Stoupakova, A.V., Henriksen, E. et al.
    2011. The geological evolution and hydrocarbon potential of the Barents and Kara shelves. In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sørensen, K. (eds) Arctic Petroleum Geology. Geological Society, London, Memoirs, 35, 325–344, https://doi.org/10.1144/M35.21
    [Google Scholar]
  51. Tsikalas, F., Faleide, J.I., Eldholm, O. & Blaich, O.A.
    2012. The NE Atlantic conjugate margins. In: Roberts, D.G. & Bally, A.W. (eds) Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps. Elsevier, Amsterdam, 140–201.
    [Google Scholar]
  52. Vågnes, E. & Amundsen, H.E.F.
    1993. Late Cenozoic uplift and volcanism on Spitsbergen: Caused by mantle convection?Geology, 21, 251–254.
    [Google Scholar]
  53. Vorren, T.O., Richardsen, G., Knutsen, S.-M. & Henriksen, E.
    1991. Cenozoic erosion and sedimentation in the western Barents Sea. Marine and Petroleum Geology, 8, 317–340.
    [Google Scholar]
  54. Zattin, M., Andreucci, B., de Toffoli, B., Grigo, D. & Tsikalas, F.
    2016. Thermochronological constraints to late Cenozoic exhumation of the Barents Sea Shelf. Marine Petroleum Geology, 73, 97–104.
    [Google Scholar]
  55. Zieba, K.J., Daszinnies, M., Emmel, B., Lothe, A., Grøver, A. & Lippard, S.
    2014. Assessment of the Cenozoic erosion amount using Monte Carlo type-petroleum systems modeling of the Hammerfest Basin, western Barents Sea. American Journal of Geoscience, 4, 40–53.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-002
Loading
/content/journals/10.1144/petgeo2018-002
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error