1887
Volume 26, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Deep-water lobe deposits are arranged hierarchically and can be characterized by high net:gross ratios but poor sand connectivity due to thin, but laterally extensive, shale layers. This heterogeneity makes them difficult to represent in standard full-field object-based models, since the sands in an object-based model are not stacked compensationally and become connected at a low net:gross ratio. The compression algorithm allows the generation of low-connectivity object-based models at high net:gross ratios, by including the net:gross and amalgamation ratios as independent input parameters. Object-based modelling constrained by the compression algorithm has been included in a recursive workflow, permitting the generation of realistic models of hierarchical lobe deposits. Representative dimensional and stacking parameters collected at four different hierarchical levels have been used to constrain a 250 m-thick, 14 km model that includes hierarchical elements ranging from 20 cm-thick sand beds to more than 30 m-thick lobe complexes. Sand beds and the fine-grained units are represented explicitly in the model, and the characteristic facies associations often used to parameterize lobe deposits are emergent from the modelling process. The model is subsequently resampled without loss of accuracy for flow simulation, and results show clearly the influence of the hierarchical heterogeneity on drainage and sweep efficiency during a water-flood simulation.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-078
2020-01-27
2024-03-28
Loading full text...

Full text loading...

References

  1. Abreu, C.J., Appi, C.J., Silva, F.G., Matos, R.S. & Borghi, L.
    2010. Depositional evolution of turbidite lobe complex in 2D high-resolution seismic. Presented at theIV Simpósio Brasileiro de Geofísica, 14–17 November 2010, Brasília, Brazil.
    [Google Scholar]
  2. Amy, L.A., Peachey, S.A., Gardiner, A.R., Pickup, G.E., Mackay, E. & Stephen, K.D.
    2013. Recovery efficiency from a turbidite sheet system: numerical simulation of waterflooding using outcrop-based geological models. Petroleum Geoscience, 19, 123–138, https://doi.org/10.1144/petgeo2011-041
    [Google Scholar]
  3. Babonneau, N., Savoye, B., Cremer, M. & Klein, B.
    2002. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Marine and Petroleum Geology, 19, 445–467, https://doi.org/10.1016/S0264-8172(02)00009-0
    [Google Scholar]
  4. Bakke, K., Kane, I.A. et al.
    2013. Seismic modelling in the analysis of deep-water sandstone termination styles. AAPG Bulletin, 97, 1395–1419, https://doi.org/10.1306/03041312069
    [Google Scholar]
  5. Bernhardt, A., Jobe, Z.R. & Lowe, D.R.
    2011. Stratigraphic evolution of a submarine channel–lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine & Petroleum Geology, 28, 785–806, https://doi.org/10.1016/j.marpetgeo.2010.05.013
    [Google Scholar]
  6. Bourget, J., Zaragosi, S. et al.
    2010. Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems. Marine Geology, 274, 187–208, https://doi.org/10.1016/j.margeo.2010.04.005
    [Google Scholar]
  7. Bruhn, C., Barroso, A., Lopes, M., Sarzenski, D., Abreu, C. & Silva, C.
    1998. High-resolution stratigraphy and reservoir heterogeneities of Upper Albian turbidite reservoirs of Albacora Field, Campos Basin, offshore Brazil. Presented at theAAPG Annual Convention and Exhibition, May 17–20, 1998, Salt Lake City, Utah, USA.
    [Google Scholar]
  8. Chapin, M. & Tiller, G.
    2007. Synthetic seismic modelling of turbidite outcrops. In: Nilsen, T.H., Shew, R.D., Steffens, G.S. & Studlick, J.R.J. (eds) Atlas of Deepwater Outcrops. AAPG Studies in Geology, 56, 21–25.
    [Google Scholar]
  9. Chapin, M.A., Davies, P., Gibson, J. & Pettingill, H.S.
    1994. Reservoir architecture of turbidite sheet sandstones in laterally extensive outcrops, Ross Formation, western Ireland. In: Weimer, P., Bouma, A.H. & Perkins, B.F. (eds) Submarine Fans and Turbidite Systems. Sequence Stratigraphy, Reservoir Architecture and Production Characteristics. Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation 15th Annual Research Conference Proceedings. Gulf Coast Section SEPM, Austin, TX, 53–68.
    [Google Scholar]
  10. Collins, J., Kenyon-Roberts, S., Cullen, B., White, J., Bordas-Le Floch, N. & Downey, J.
    2015. Arran Field: a complex heterolithic reservoir on the margins of the Forties Fan System. In: McKie, T., Rose, P.T.S., Hartley, A.J., Jones, D.W. & Armstrong, T.L. (eds) 2015. Tertiary Deep-Marine Reservoirs of the North Sea Region. Geological Society, London, Special Publications, 403, 185–217, https://doi.org/10.1144/SP403.10
    [Google Scholar]
  11. Cosentino, L.
    2001. Integrated Reservoir Studies. Editions Technip, Paris.
    [Google Scholar]
  12. Cullis, S., Colombera, L., Patacci, M. & McCaffrey, W.D.
    2018. Hierarchical classifications of the sedimentary architecture of deep-marine depositional systems. Earth-Science Reviews, 179, 38–71, https://doi.org/10.1016/j.earscirev.2018.01.016
    [Google Scholar]
  13. Deptuck, M.E., Piper, D.J., Savoye, B. & Gervais, A.
    2008. Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55, 869–898, https://doi.org/10.1111/j.1365-3091.2007.00926.x
    [Google Scholar]
  14. Deutsch, C.V. & Wang, L.
    1996Hierarchical object-based stochastic modeling of fluvial reservoirs. Mathematical Geology, 28, 857–880, https://doi.org/10.1007/BF02066005
    [Google Scholar]
  15. Drinkwater, N.J. & Pickering, K.T.
    2001. Architectural elements in a high-continuity sand-prone turbidite system, Late Precambrian Kongsfjord Formation, Northern Norway: application to hydrocarbon reservoir characterization. AAPG Bulletin, 85, 1731–1757, https://doi.org/10.1306/8626D059-173B-11D7-8645000102C1865D
    [Google Scholar]
  16. Dutton, S.P., Flanders, W.A. & Barton, M.D.
    2003. Reservoir characterization of a Permian deep-water sandstone, East Ford field, Delaware basin, Texas. AAPG Bulletin, 87, 609–627, https://doi.org/10.1306/10100201085
    [Google Scholar]
  17. Eldrett, J., Tripsanas, E., Davis, C., McKie, T., Vierira, M., Osterloff, P. & Sandison, T.
    2015. Sedimentological evolution of Sele Formation deep-marine depositional systems of the Central North Sea. In: McKie, T., Rose, P.T.S., Hartley, A.J., Jones, D.W. & Armstrong, T.L. (eds) 2015. Tertiary Deep-Marine Reservoirs of the North Sea Region. Geological Society, London, Special Publications, 403, 63–98, https://doi.org/10.1144/SP403.9
    [Google Scholar]
  18. Elliott, T.
    2000. Depositional architecture of a sand-rich, channelized turbidite system: The Upper Carboniferous Ross Sandstone Formation, western Ireland. In: Weimer, P., Slatt, R.M. et al. (eds) Deep-water Reservoirs of the World. Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation 20th Annual Bob F. Perkins Research Conference Proceedings. Gulf Coast Section SEPM, Austin, TX, 342–373.
    [Google Scholar]
  19. Figueiredo, J.J., Hodgson, D.M., Flint, S.S. & Kavanagh, J.P.
    2010. Depositional environments and sequence stratigraphy of an exhumed Permian mudstone-dominated submarine slope succession, Karoo Basin, South Africa. Journal of Sedimentary Research, 80, 97–118, https://doi.org/10.2110/jsr.2010.002
    [Google Scholar]
  20. Fitzsimmons, R., Veiberg, G. & Krakenes, T.
    2005. Characterization of the Heimdal Sandstones within Alveim, Quads 24 and 25, Norwegian North Sea. In: Dore, A.G. & Vining, B.A. (eds) 2005. Petroleum Geology: North-West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference. Geological Society, London, 123–131, https://doi.org/10.1144/0060123
    [Google Scholar]
  21. Fjellanger, E., Surlyk, F., Wamsteeker, L.C. & Midtun, T.
    2005. Upper Cretaceous basin-floor fans in the Vøring Basin, Mid Norway shelf. In: Wandås, B.T.G., Nystuen, J.P. ,  Eide, E. &  Gradstein, F. (eds) Onshore–Offshore Relationships on the North Atlantic Margin. Norwegian Petroleum Society Special Publications, 12, 135–164, https://doi.org/10.1016/S0928-8937(05)80047-5
    [Google Scholar]
  22. Fonnesu, F.
    2003. 3D seismic images of a low-sinuosity slope channel and related depositional lobe (West Africa deep-offshore). Marine and Petroleum Geology, 20, 615–629, https://doi.org/10.1016/j.marpetgeo.2003.03.006
    [Google Scholar]
  23. Fugelli, E.M.G. & Olsen, T.R.
    2005. Screening for deep-marine reservoirs in frontier basins: Part 1 – Examples from offshore mid-Norway. AAPG Bulletin, 89, 853–882, https://doi.org/10.1306/02110504029
    [Google Scholar]
  24. Gervais, A., Mulder, T., Savoye, B. & Gonthier, E.
    2006. Sediment distribution and evolution of sedimentary processes in a small sandy turbidite system (Golo system, Mediterranean Sea): implications for various geometries based on core framework. Geo-Marine Letters, 26, 373–395, https://doi.org/10.1007/s00367-006-0045-z
    [Google Scholar]
  25. Grundvåg, S.A., Johannessen, E.P., Hell-Hansen, W. & Plink-Björklund, P.
    2014. Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen. Sedimentology, 61, 535–569, https://doi.org/10.1111/sed.12067
    [Google Scholar]
  26. Haldorsen, H.H. & Damsleth, E.
    1990. Stochastic modelling. Journal of Petroleum Technology, 42, 404–412, https://doi.org/10.2118/20321-PA
    [Google Scholar]
  27. Hanquiez, V., Mulder, T., Toucanne, S., Lecroart, P., Bonnel, C., Marchès, E. & Gonthier, E.
    2010. The sandy channel–lobe depositional systems in the Gulf of Cadiz: Gravity processes forced by contour current processes. Sedimentary Geology, 229, 110–123, https://doi.org/10.1016/j.sedgeo.2009.05.008
    [Google Scholar]
  28. Haughton, P., Davis, C., Mccaffrey, W. & Barker, S.
    2009. Hybrid sediment gravity flow deposits – Classification, origin and significance. Marine & Petroleum Geology, 26, 1900–1918, https://doi.org/10.1016/j.marpetgeo.2009.02.012
    [Google Scholar]
  29. Hawie, N., Covault, J.A., Dunlap, D. & Sylvester, Z.
    2018. Slope-fan depositional architecture from high-resolution forward stratigraphic models. Marine and Petroleum Geology, 91, 576–585, https://doi.org/10.1016/j.marpetgeo.2017.12.033
    [Google Scholar]
  30. Hempton, M., Marshall, J., Sadler, S., Hogg, N., Charles, R. & Harvey, C.
    2005. Turbidite reservoirs of the Sele Formation, Central North Sea: geological challenges for improving production. In: Dore, A.G. & Vining, B.A. (eds) 2005. Petroleum Geology: North-West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference. Geological Society, London, 449–459, https://doi.org/10.1144/0060449
    [Google Scholar]
  31. Hodgson, D.M., Flint, S.S., Hodgetts, D., Nkwater, N.J., Johannessen, E.P. & Luthi, S.M.
    2006. Stratigraphic evolution of fine-grained submarine fan systems, Tanqua depocenter, Karoo Basin, South Africa. Journal of Sedimentary Research, 76, 20–40, https://doi.org/10.2110/jsr.2006.03
    [Google Scholar]
  32. Hofstra, M., Pontén, A., Peakall, J., Flint, S., Nair, K. & Hodgson, D.
    2016. The impact of fine-scale reservoir geometries on streamline flow patterns in submarine lobe deposits using outcrop analogues from the Karoo Basin. Petroleum Geoscience, 23, 159–176, https://doi.org/10.1144/petgeo2016-087
    [Google Scholar]
  33. Hovadik, J.M. & Larue, D.K.
    2010. Stratigraphic and structural connectivity. In: Jolley, S.J., Fisher, Q.J., Ainsworth, R.B., Vrolijk, P.J. & Delisle, S. (eds) 2010. Reservoir Compartmentalization. Geological Society, London, Special Publications, 347, 219–242, https://doi.org/10.1144/SP347.13
    [Google Scholar]
  34. Islam, M.S. & Manzocchi, T.
    2017. The transmissibility of faulted connections in corner-point geometry models. Petroleum Geoscience, 23, 148–158, https://doi.org/10.1144/petgeo2016-033
    [Google Scholar]
  35. Jegou, I., Savoye, B., Pirmez, C. & Droz, L.
    2008. Channel-mouth lobe complex of the recent Amazon Fan: The missing piece. Marine Geology, 252, 62–77, https://doi.org/10.1016/j.margeo.2008.03.004
    [Google Scholar]
  36. Johnson, S.D., Flint, S., Hinds, D. & De Ville Wickens, H.
    2001. Anatomy, geometry and sequence stratigraphy of basin floor to slope turbidite systems, Tanqua Karoo, South Africa. Sedimentology, 48, 987–1023, https://doi.org/10.1046/j.1365-3091.2001.00405.x
    [Google Scholar]
  37. Jones, D.W., Large, S., McQueen, A. & Helmi, A.
    2015. Reservoir geology of the Paleocene Forties Sandstone Member in the Fram discovery, UK Central North Sea. In: McKie, T., Rose, P.T.S., Hartley, A.J., Jones, D.W. & Armstrong, T.L. (eds) 2015. Tertiary Deep-Marine Reservoirs of the North Sea Region. Geological Society, London, Special Publications, 403, 219–246, https://doi.org/10.1144/SP403.13
    [Google Scholar]
  38. Kane, I.A., Mccaffrey, W.D. & Martinsen, O.J.
    2009. Allogenic vs. autogenic controls on megaflute formation. Journal of Sedimentary Research, 79, 643–651, https://doi.org/10.2110/jsr.2009.072
    [Google Scholar]
  39. Kilhams, B., Hartley, A., Huuse, M. & Davis, C.
    2012. Characterizing the Paleocene turbidites of the North Sea: the Mey Sandstone Member, Lista Formation, UK central graben. Petroleum Geoscience, 18, 337–354, https://doi.org/10.1144/1354-079311-054
    [Google Scholar]
  40. King, M.J.
    2007. Upgridding and upscaling: Current trends and future directions. Paper SPE-112810-DL. SPE Distinguished Lecturer Series. Society of Petroleum Engineers, Richardson, TX.
    [Google Scholar]
  41. King, P.R.
    1990. The conductivity and connectivity of overlapping sandbodies. In: Buller, A.T., Berg, E., Hjelmeland, O., Kleppe, J., Torsaeter, O. & Aasen, J.O. (eds) North Sea Oil and Gas Reservoirs III. Graham and Trotman, London, 353–362.
    [Google Scholar]
  42. Labourdette, R., Crumeyrolle, P. & Remacha, E.
    2008. Characterisation of dynamic flow patterns in turbidite reservoirs using 3D outcrop analogues: Example of the Eocene Morillo turbidite system (south-central Pyrenees, Spain). Marine and Petroleum Geology, 25, 255–270, https://doi.org/10.1016/j.marpetgeo.2007.07.003
    [Google Scholar]
  43. Larue, D.K. & Hovadik, J.
    2006. Connectivity of channelized reservoirs: a modelling approach. Petroleum Geoscience, 12, 291–308, https://doi.org/10.1144/1354-079306-699
    [Google Scholar]
  44. Lyons, K.T., Pacht, J. & Bruhn, C.
    1994. Relating depositional facies to seismic-scale stratal geometries, Upper Jurassic Great Vally Sequence, California. In: Weimer, P., Bouma, A.H. & Perkins, B.F. (eds) Submarine Fans and Turbidite Systems. Sequence Stratigraphy, Reservoir Architecture and Production Characteristics. Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation 15th Annual Research Conference Proceedings. Gulf Coast Section SEPM, Austin, TX, 221–232.
    [Google Scholar]
  45. Macdonald, H.A., Peakall, J., Wignall, P.B. & Best, J.
    2011. Sedimentation in deep-sea lobe-elements: implications for the origin of thickening-upward sequences. Journal of the Geological Society, London, 168, 319–332, https://doi.org/10.1144/0016-76492010-036
    [Google Scholar]
  46. Manzocchi, T., Walsh, J.J., Nell, P. & Yielding, G.
    1999. Fault transmissibility multipliers for flow simulation models. Petroleum Geoscience, 5, 53–63, https://doi.org/10.1144/petgeo.5.1.53
    [Google Scholar]
  47. Manzocchi, T., Walsh, J.J., Tomasso, M., Strand, J., Childs, C. & Haughton, P.D.W.
    2007. Static and dynamic connectivity in bed-scale models of faulted and unfaulted turbidites. In: Jolley, S.J., Barr, D., Walsh, J.J. & Knipe, R.J. (eds) 2007. Structurally Complex Reservoirs. Geological Society, London, Special Publications, 292, 309–336, https://doi.org/10.1144/SP292.18
    [Google Scholar]
  48. Manzocchi, T., Heath, A.E., Palananthakumar, B., Childs, C. & Walsh, J.J.
    2008. Faults in conventional flow simulation models: a consideration of representational assumptions and geological uncertainties. Petroleum Geoscience, 14, 91–110, https://doi.org/10.1144/1354-079306-775
    [Google Scholar]
  49. Marchand, A.M., Apps, G., Li, W. & Rotzien, J.R.
    2015. Depositional processes and impact on reservoir quality in deepwater Paleogene reservoirs, US Gulf of Mexico. AAPG Bulletin, 99, 1635–1648, https://doi.org/10.1306/04091514189
    [Google Scholar]
  50. Milliman, J.D. & Syvitski, J.P.
    1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100, 525–544, https://doi.org/10.1086/629606
    [Google Scholar]
  51. Mulder, T., Callec, Y. et al.
    2010. High-resolution analysis of submarine lobes deposits: Seismic-scale outcrops of the Lauzanier area (SE Alps, France). Sedimentary Geology, 229, 160–191, https://doi.org/10.1016/j.sedgeo.2009.11.005
    [Google Scholar]
  52. Normark, W.R., Paull, C.K., Caress, D.W., Ussler, W., III & Sliter, R.
    2009. Fine-scale relief related to Late Holocene channel shifting within the floor of the upper Redondo Fan, offshore Southern California. Sedimentology, 56, 1690–1704, https://doi.org/10.1111/j.1365-3091.2009.01052.x
    [Google Scholar]
  53. Oluboyo, A., Gawthorpe, R., Bakke, K. & Hadler-Jacobsen, F.
    2014. Salt tectonic controls on deep-water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola. Basin Research, 26, 597–620, https://doi.org/10.1111/bre.12051
    [Google Scholar]
  54. Pettinga, L., Jobe, Z., Shumaker, L. & Howes, N.
    2018. Morphometric scaling relationships in submarine channel–lobe systems. Geology, 46, 819–822, https://doi.org/10.1130/G45142.1
    [Google Scholar]
  55. Pfeiffer, D.S., Mitchell, B.T. & Yevi, G.Y.
    2000. Mensa, Mississippi Canyon Block 731 Field, Gulf of Mexico – An integrated field study. In: Weimer, P., Slatt, R.M. et al. (eds) Deep-Water Reservoirs of the World. Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation 20th Annual Bob F. Perkins Research Conference Proceedings. Gulf Coast Section SEPM, Austin, TX, 756–775.
    [Google Scholar]
  56. Prélat, A. & Hodgson, D.
    2013. The full range of turbidite bed thickness patterns in submarine lobes: controls and implications. Journal of the Geological Society, London, 170, 209–214, https://doi.org/10.1144/jgs2012-056
    [Google Scholar]
  57. Prélat, A., Hodgson, D. & Flint, S.
    2009. Evolution, architecture and hierarchy of distributary deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154, https://doi.org/10.1111/j.1365-3091.2009.01073.x
    [Google Scholar]
  58. Prélat, A., Covault, J.A., Hodgson, D.M., Fildani, A. & Flint, S.S.
    2010. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232, 66–76, https://doi.org/10.1016/j.sedgeo.2010.09.010
    [Google Scholar]
  59. Pringle, J.K., Brunt, R.L., Hodgson, D.M. & Flint, S.S.
    2010. Capturing stratigraphic and sedimentological complexity from submarine channel complex outcrops to digital 3D models, Karoo Basin, South Africa. Petroleum Geoscience, 16, 307–330, https://doi.org/10.1144/1354-079309-028
    [Google Scholar]
  60. Pyles, D.R.
    2007. Architectural elements in a ponded submarine fan, Carboniferous Ross Sandstone, western Ireland: Atlas of deep-water outcrops. In: Nilsen, T.H., Shew, R.D., Steffens, G.S. & Studlick, J.R.J. (eds) Atlas of Deepwater Outcrops. AAPG Studies in Geology, 56, 206–209, https://doi.org/10.1306/St561240
    [Google Scholar]
  61. Pyles, D.R., Strachan, L. & Jennette, D.
    2014. Lateral juxtapositions of channel and lobe elements in distributive submarine fans: Three-dimensional outcrop study of the Ross Sandstone and geometric model. Geosphere, 10, 1104–1122, https://doi.org/10.1130/GES01042.1
    [Google Scholar]
  62. Pyrcz, M.J., Catuneanu, O. & Deusch, C.V.
    2005. Stochastic surface-based modelling of turbidite lobes. AAPG Bulletin, 89, 117–191, https://doi.org/10.1306/09220403112
    [Google Scholar]
  63. Pyrcz, M.J., Sech, R.P., Covault, J.A., Willis, B.J., Sylvester, Z. & Sun, T.
    2015. Stratigraphic rule-based reservoir modelling. Bulletin of Canadian Petroleum Geology, 63, 287–303, https://doi.org/10.2113/gscpgbull.63.4.287
    [Google Scholar]
  64. Romans, B.W., Hubbard, S.M. & Graham, S.A.
    2009. Stratigraphic evolution of an outcropping continental slope system, Tres Pasos Formation at Cerro Divisadero, Chile. Sedimentology, 56, 737–764, https://doi.org/10.1111/j.1365-3091.2008.00995.x
    [Google Scholar]
  65. Saller, A., Werner, K., Sugiaman, F., Cebastiant, A., May, R., Glenn, D. & Barker, C.
    2008. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia. AAPG Bulletin, 92, 919–949, https://doi.org/10.1306/03310807110
    [Google Scholar]
  66. Santos, R.R.A., Lopes, M.R.F., Corá, C.A.G. & Bruhn, C.H.L.
    2000. Adaptive visualization of deepwater turbidite systems in Campos Basin using 3-D seismic. Leading Edge, 19, 512–517, https://doi.org/10.1190/1.1438648
    [Google Scholar]
  67. Satur, N., Hurst, A., Cronin, B., Kelling, G. & Gürbüz, K.
    2000. Sand body geometry in a sand-rich, deep-water clastic system, Miocene Cingöz Formation of southern Turkey. Marine and Petroleum Geology, 17, 239–252, https://doi.org/10.1016/S0264-8172(99)00005-7
    [Google Scholar]
  68. Savoye, B., Babonneau, N., Dennielou, B. & Bez, M.
    2009. Geological overview of the Angola–Congo margin, the Congo deep-sea fan and its submarine valleys. Deep Sea Research Part II: Topical Studies in Oceanography, 56, 2169–2182, https://doi.org/10.1016/j.dsr2.2009.04.001
    [Google Scholar]
  69. Sømme, T.O., Helland-Hansen, W., Martinsen, O.J. & Thurmond, J.B.
    2009. Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems. Basin Research, 21, 361–387, https://doi.org/10.1111/j.1365-2117.2009.00397.x
    [Google Scholar]
  70. Stephen, K.D., Clark, J.R. & Gardiner, A.R.
    2001. Outcrop-based stochastic modelling of turbidite amalgamation and its effects on hydrocarbon recovery. Petroleum Geoscience, 7, 163–172, https://doi.org/10.1144/petgeo.7.2.163
    [Google Scholar]
  71. Steyn, R.
    2009. Modelling the Architecture of Distal Sand-Rich Lobe Deposits: An Example from Fan 2, Skoorsteenberg Formation, Tanqua Karoo, South Africa. MSc thesis, University of Stellenbosch, Stellenbosch, South Africa.
    [Google Scholar]
  72. Straub, K.M. & Pyles, D.R.
    2012. Quantifying the hierarchical organization of compensation in submarine fans using surface statistics. Journal of Sedimentary Research, 82, 889–898, https://doi.org/10.2110/jsr.2012.73
    [Google Scholar]
  73. Sullivan, M.D., Foreman, J.L., Stern, D. & Jensen, G.N.
    2004. An Integrated approach to characterization and modeling of deep-water reservoirs, Diana Field, western Gulf of Mexico. Environmental Science & Technology, 40, 4016–4024, https://doi.org/10.1306/M80924C11
    [Google Scholar]
  74. Tahmasebi, P.
    2018. Multiple point statistics: A review. In: Daya Sagar, B.S., Cheng, Q. & Agterberg. F. (eds) Handbook of Mathematical Geosciences. Fifty Years of IAMG. Springer, Cham, Switzerland, 613–643.
    [Google Scholar]
  75. Weber, K.
    1986. How heterogeneity affects oil recovery. In: Lake, L.W. & Carroll, H.B., Jr (eds) Reservoir Characterization. Academic Press, Orlando, FL, 487–544.
    [Google Scholar]
  76. Weislogel, A.L., Graham, S.A. & Chang, E.Z.
    2007. 130: Accumulation of the Middle to Upper Triassic Songpan–Ganzi turbidite complex, China. In: Nilsen, T.H., Shew, R.D., Steffens, G.S. & Studlick, J.R.J. (eds) Atlas of Deep-Water Outcrops. AAPG Studies in Geology, 56, (CD-ROM), 20 p.
    [Google Scholar]
  77. Wu, X.-H., Bi, L. & Kalla, S.
    2012. Effective parameterization for reliable reservoir performance predictions. International Journal for Uncertainty Quantification, 2, 259–278, https://doi.org/10.1615/Int.J.UncertaintyQuantification.2012003765
    [Google Scholar]
  78. Zaragosi, S., Auffret, G., Faugères, J.-C., Garlan, T., Pujol, C. & Cortijo, E.
    2000. Physiography and recent sediment distribution of the Celtic Deep-Sea Fan, Bay of Biscay. Marine Geology, 169, 207–237, https://doi.org/10.1016/S0025-3227(00)00054-2
    [Google Scholar]
  79. Zhang, L.
    2015. Quantitative Characterization and Hierarchical Modelling of Deepwater Lobe Deposits. PhD thesis, University College Dublin.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-078
Loading
/content/journals/10.1144/petgeo2018-078
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error