1887
Volume 26, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Numerical modelling in 2D is used to explore interactions between synrift lithospheric extension, salt deposition and deformation, and pre- and post-salt sedimentation, for wide rifted margins with weak continental crust. Distributed aggrading synrift sedimentation enhances listric normal faulting of the sediments and crust in the mid and distal margin. In contrast, localized prograding sedimentation initiates a positive feedback between sedimentation, faulting and mid- to lower-crustal flow. This feedback causes localized crustal extension at the proximal margin, and leads to thick sediments in deep proximal basins. The feedback is more pronounced when more sediment is deposited, and does not develop in models with stronger, narrower rifted margins. Later initiation of the post-salt prograding sediments leads to a less pronounced feedback with lower-crustal flow and a more significant advancement of the prograding wedge over the salt body. We compare our model results with the rifted Nova Scotia Atlantic margin, contrasting margin evolution and salt tectonics between the northeastern region, which experienced significant post-salt synrift sedimentation, and the central region, where less post-salt sediment was deposited. We show that the northeastern margin may have experienced enhanced proximal graben development owing to prograding synrift sedimentation.

This article is part of the Mechanics of salt systems: state of the field in numerical methods collection available at: https://www.lyellcollection.org/cc/mechanics-of-salt-systems

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-089
2019-11-05
2020-02-26
Loading full text...

Full text loading...

References

  1. Albertz, M. & Beaumont, C.
    2010. An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 2. Comparison of observations with geometrically complex numerical models. Tectonics, 29, TC4018, https://doi.org/10.1029/2009TC002540
    [Google Scholar]
  2. Albertz, M., Beaumont, C., Shimeld, J.W., Ings, S.J. & Gradmann, S.
    2010. An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1: Comparison of observations with geometrically simple numerical models. Tectonics, 29, TC4017, https://doi.org/10.1029/2009TC002539
    [Google Scholar]
  3. Allen, J. & Beaumont, C.
    2015. Continental margin syn-rift salt tectonics at intermediate width margins. Basin Research, 28, 598–633, https://doi.org/10.1111/bre.12123
    [Google Scholar]
  4. Baikpour, S., Zulauf, G., Sebti, S., Kheirolah, H. & Dieti, C.
    2010. Analogue and geophysical modelling of the Garmsar Salt Nappe, Iran: constraints on the evolution of the Alborz Mountains. Geophysical Journal International, 182, 599–612, https://doi.org/10.1111/j.1365-246X.2010.04656.x
    [Google Scholar]
  5. Beaumont, C., Jamieson, R.A., Butler, J.P. & Warren, C.J.
    2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth and Planetary Science Letters, 287, 116–129, https://doi.org/10.1016/j.epsl.2009.08.001
    [Google Scholar]
  6. Bialas, R.W. & Buck, W.R.
    2009. How sediment promotes narrow rifting: Application to the Gulf of California. Tectonics, 28, TC4014, https://doi.org/10.1029/2008TC002394
    [Google Scholar]
  7. Bonini, M.
    2003. Detachment folding, fold amplification, and diapirism in thrust wedge experiments. Tectonics, 22, 1065–1076, https://doi.org/10.1029/2002TC001458
    [Google Scholar]
  8. Brun, J.P.
    1998. Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 357, 695–712, https://doi.org/10.1098/rsta.1999.0349
    [Google Scholar]
  9. Brun, J.P. & Mauduit, T.P.O.
    2009. Salt rollers: Structure and kinematics from analogue modelling. Marine and Petroleum Geology, 26, 249–258, https://doi.org/10.1016/j.marpetgeo.2008.02.002
    [Google Scholar]
  10. Burchardt, S., Koyi, H. & Schmeling, H.
    2011. Strain pattern within and around denser blocks sinking within Newtonian salt structures. Journal of Structural Geology, 33, 145–153, https://doi.org/10.1016/j.jsg.2010.11.007
    [Google Scholar]
  11. Burov, E. & Cloetingh, S.
    1997. Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth and Planetary Science Letters, 150, 7–26, https://doi.org/10.1016/S0012-821X(97)00069-1
    [Google Scholar]
  12. Butler, J.P., Beaumont, C. & Jamiesson, R.A.
    2014. The Alps 2: Controls on crustal subduction and (ultra) high-pressure rock exhumation in Alpine-type orogens. Journal of Geophysical Research, 119, 5987–6022, https://doi.org/10.1002/2013JB010799
    [Google Scholar]
  13. Carter, N.L., Handin, J., Russel, J.E. & Horseman, S.T.
    1993. Rheology of rock salt. Journal of Structural Geology, 15, 1257–1271, https://doi.org/10.1016/0191-8141(93)90168-A
    [Google Scholar]
  14. Chemia, Z., Koyi, H. & Schmeling, H.
    2008. Numerical modeling of rise and fall of a dense layer in salt diapirs. Geophysical Journal International, 172, 798–816, https://doi.org/10.1111/j.1365-246X.2007.03661.x
    [Google Scholar]
  15. Chen, A., Jin, C., Lou, Z., Chen, H., Xu, S., Huang, K. & Hu, S.
    2013. Salt tectonics and basin evolution in the Gabon Coastal Basin, West Africa. Journal of Earth Science, 24, 903–817, https://doi.org/10.1007/s12583-013-0383-5
    [Google Scholar]
  16. Clift, P.D., Brune, S. & Quinteros, J.
    2015. Climate changes control offshore crustal structure at South China Sea continental margin. Earth and Planetary Science Letters, 420, 66–72, https://doi.org/10.1016/j.epsl.2015.03.032
    [Google Scholar]
  17. Corti, G., Ranalli, G., Muluget, G., Agostini, A., Sani, F. & Zugu, A.
    2010. Control of the rheological structure of the lithosphere on the inward migration of tectonics activity during continental rifting. Tectonophysics, 490, 165–172, https://doi.org/10.1016/j.tecto.2010.05.004
    [Google Scholar]
  18. Corti, G., Ranalli, G., Agostini, A. & Sokoutis, D.
    2013. Inward migration of faulting during continental rifting: Effects of pre-existing lithospheric structure and extension rate. Tectonophysics, 594, 137–148, https://doi.org/10.1016/j.tecto.2013.03.028
    [Google Scholar]
  19. Costa, E. & Vendeville, B.C.
    2002. Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic decollement. Journal of Structural Geology, 24, 1729–1739, https://doi.org/10.1016/S0191-8141(01)00169-9
    [Google Scholar]
  20. Crosby, A.G., White, N.J., Edwards, G.R.H., Thompson, M., Corfield, R. & Mackay, L.
    2011. Evolution of deep-water rifted margins: Testing depth-dependent extensional models. Tectonics, 30, TC1004, https://doi.org/10.1029/2010TC002687
    [Google Scholar]
  21. Davison, I., Anderson, L. & Nuttall, P.
    2012. Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. In: Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T. & Hodgkinson, R. (eds) 2012. Salt Tectonics, Sediments and Prospectivity. Geological Society, London, Special Publications, 363, 159–174, https://doi.org/10.1144/SP363.8
    [Google Scholar]
  22. Del Ventisette, C., Montanari, D., Sani, F. & Bonnini, M.
    2004. Basin inversion and fault reactivation in laboratory experiments. Journal of Structural Geology, 28, 2067–2083, https://doi.org/10.1016/j.jsg.2006.07.012
    [Google Scholar]
  23. Del Ventisette, C., Montanari, D., Bonini, M. & Sani, F.
    2005. Positive fault inversion triggering ‘intrusive diapirism’: an analogue modeling perspective. Terra Nova, 17, 478–485, https://doi.org/10.1111/j.1365-3121.2005.00637.x
    [Google Scholar]
  24. Deptuck, M.E. & Kendell, K.L.
    2017. A review of Mesozoic salt tectonics along the Scotian margin, eastern Canada. In: Soto, J., Flinch, J. & Tari, G. (eds) Permo-Triassic Salt Provinces of Europe, North Africa and Central Atlantic: Tectonics and Hydrocarbon Potential. Elsevier, Amsterdam, 287–312.
    [Google Scholar]
  25. Fullsack, P.
    1995. An arbitrary Lagrangian–Eulerian formulation for creeping flows and its application in tectonic models. Geophysical Journal International, 120, 1–23, https://doi.org/10.1111/j.1365-246X.1995.tb05908.x
    [Google Scholar]
  26. Funck, T., Jackson, H.R., Louden, K.E., Dehler, S.A. & Wu, Y.
    2004. Crustal structure of the northern Nova Scotia rifted continental margin (eastern Canada). Journal of Geophysical Research: Solid Earth, 109, B09102, https://doi.org/10.1029/2004JB003008
    [Google Scholar]
  27. Ge, H.X., Jackson, M.P.A. & Vendeville, B.C.
    1997. Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81, 398–423.
    [Google Scholar]
  28. Gemmer, L., Ings, S.J., Medvedev, S. & Beaumont, C.
    2004. Salt tectonics driven by differential sediment loading: stability analysis and finite-element experiments. Basin Research, 16, 199–218, https://doi.org/10.1111/j.1365-2117.2004.00229.x
    [Google Scholar]
  29. Gemmer, L., Beaumont, C. & Ings, S.J.
    2005. Dynamics modelling of passive margin slat tectonics: effects of water loading, sediment properties, and sedimentation patterns. Basin Research, 17, 383–402, https://doi.org/10.1111/j.1365-2117.2005.00274.x
    [Google Scholar]
  30. Gleason, G.C. & Tullis, J.
    1995. A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247, 1–23, https://doi.org/10.1016/0040-1951(95)00011-B
    [Google Scholar]
  31. Goteti, R., Ings, S.J. & Beaumont, C.
    2012. Development of salt minibasins initiated by sedimentary topographic relief. Earth and Planetary Science Letters, 339, 103–116, https://doi.org/10.1016/j.epsl.2012.04.045
    [Google Scholar]
  32. Gradstein, F.M., Ogg, J. & Smith, S.G.
    2005. A Geological Time Scale 2004. Cambridge University Press, Cambridge.
    [Google Scholar]
  33. Gueydan, F., Morency, C. & Brun, J.P.
    2008. Continental rifting as a function of lithosphere mantle strength. Tectonophysics, 460, 83–93, https://doi.org/10.1016/j.tecto.2008.08.012
    [Google Scholar]
  34. Hanafi, B.R.
    2013. The influence of basin architecture and synrift salt on structural evolution during and after rifting: A case study of the Orpheus Rift Basin, offshore Nova Scotia and Newfoundland, Canada. MSc thesis, Rutgers University, New Brunswick, NJ, USA.
    [Google Scholar]
  35. Hudec, M.R., Jackson, M.P.A. & Schultz-Ela, D.D.
    2009. The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121, 201–221, https://doi.org/10.1130/B26275.1
    [Google Scholar]
  36. Huismans, R. & Beaumont, C.
    2011. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 473, 74–U85, https://doi.org/10.1038/nature09988
    [Google Scholar]
  37. 2014. Rifted continental margins: The case for depth-dependent extension. Earth and Planetary Science Letters, 407, 148–162, https://doi.org/10.1016/j.epsl.2014.09.032
    [Google Scholar]
  38. Ings, S.J. & Shimeld, J.W.
    2006. A new conceptual model for the structural evolution of a regional salt detachment on the northeast Scotian margin, offshore eastern Canada. AAPG Bulletin, 90, 1407–1423, https://doi.org/10.1306/04050605159
    [Google Scholar]
  39. Jansa, L.F. & Wade, J.A
    . 1975. Paleogeography and sedimentation in the Mesozoic and Cenozoic, southeastern Canada. In: Yorath, C.J., Parker, E.R. & Glass, D.J. (eds) Canada's Continental Margins and Offshore Petroleum Exploration. Canadian Society of Petroleum Geologists Memoirs, 4, 79–102.
    [Google Scholar]
  40. Karato, S. & Wu, P.
    1993. Rheology of the upper mantle – a synthesis. Science, 260, 771–778, https://doi.org/10.1126/science.260.5109.771
    [Google Scholar]
  41. Karner, G.D. & Driscoll, N.W.
    1999. Style, timing and distribution of tectonic deformation across the Exmouth Plateau, northwest Australia, determined from stratal architecture and quantitative basin modelling. In: Mac Niocaill, C. & Ryan, P.D. (eds) 1999. Continental Tectonics. Geological Society, London, Special Publications, 164, 271–311, https://doi.org/10.1144/GSL.SP.1999.164.01.14
    [Google Scholar]
  42. Karner, G.D., Driscoll, N.W. & Barker, D.H.N.
    2003. Syn-rift region subsidence across the West African continental margin; the role of lower plate ductile extension. In: Arthur, T.J., Macgregor, D.S. & Cameron, N. (eds) 2003. Petroleum Geology of Africa: New Themes and Developing Technologies. Geological Society, London, Special Publications, 207, 105–129, https://doi.org/10.1144/GSL.SP.2003.207.6
    [Google Scholar]
  43. Keen, C.E. & Potter, D.P.
    1995. The transition from a volcanic to a nonvolcanic rifted margin off eastern Canada. Tectonics, 14, 359–371, https://doi.org/10.1029/94TC03090
    [Google Scholar]
  44. Klitgord, K.D. & Schouten, H.
    1986. Plate kinematics of the central Atlantic. In: Vogt, P.R. & Tucholke, B.E. (eds) The Western North Atlantic Region. The Geology of North America, M. Geological Society of America, Boulder, CO, 351–378.
    [Google Scholar]
  45. Labails, C., Olivet, J.L., Aslanian, D. & Roest, W.
    2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 297, 355–368, https://doi.org/10.1016/j.epsl.2010.06.024
    [Google Scholar]
  46. Lavier, L.L. & Manatschal, G.
    2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440, 324–328, https://doi.org/10.1038/nature04608
    [Google Scholar]
  47. Li, L., Clift, P.D., Stephenson, R. & Nguyen, H.T.
    2014. Non-uniform hyper-extension of seafloor spreading on the Vietnam continental margin and the SW South China Sea. Basin Research, 26, 106–134, https://doi.org/10.1111/bre.12045
    [Google Scholar]
  48. Li, S.Y. & Urai, J.L.
    2016. Rheology of rock salt for salt tectonics modeling. Petroleum Science, 13, 712–724, https://doi.org/10.1007/s12182-016-0121-6
    [Google Scholar]
  49. Lister, G.S., Etheridge, M.A. & Symonds, P.A.
    1986. Detachment faulting and the evolution of passive continental margins. Geology, 14, 246–250, https://doi.org/10.1130/0091-7613(1986)14<246:DFATEO>2.0.CO;2
    [Google Scholar]
  50. Lister, G.S., Etherdige, M.A. & Symonds, P.A.
    1991. Detachment models for the formation of passive continental margins. Tectonics, 10, 1038–1064, https://doi.org/10.1029/90TC01007
    [Google Scholar]
  51. Longoni, M., Malossi, A.C.I. & Villa, A.
    2010. A robust and efficient conservative technique for simulating three-dimensional sedimentary basin dynamics. Computers & Fluids, 39, 1964–1976, https://doi.org/10.1016/j.compfluid.2010.06.028
    [Google Scholar]
  52. Louden, K., Wu, Y. & Tari, G.
    2012. Systematic variations in basement morphology and rifting geometry along the Nova Scotia and Morocco conjugate margins. In: Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemčok, M. & Sinha, S.T . (eds) 2012. Conjugate Divergent Margins. Geological Society, London, Special Publications, 369, 267–287, https://doi.org/10.1144/SP369.9
    [Google Scholar]
  53. Mackwell, S., Zimmerman, M. & Kohlstedt, D.
    1998. High-temperature deformation of dry diabase with application to tectonics on Venus. Journal of Geophysical Research: Solid Earth, 103, 975–984, https://doi.org/10.1029/97JB02671
    [Google Scholar]
  54. McKenzie, D.
    1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32, https://doi.org/10.1016/0012-821X(78)90071-7
    [Google Scholar]
  55. Morley, C.K. & Westaway, R.
    2006. Subsidence in the super-deep Pattani and Malay basins of Southeast Asia: a coupled model incorporating lower-crustal flow in response to post-rift sediment loading. Basin Research, 18, 51–84, https://doi.org/10.1111/j.1365-2117.2006.00285.x
    [Google Scholar]
  56. Nagel, T.J. & Buck, W.R.
    2004. Symmetric alternative to asymmetric rifting models. Geology, 32, 937–940, https://doi.org/10.1130/G20785.1
    [Google Scholar]
  57. Olsen, P.E.
    1997. Stratigraphic record of the early Mesozoid breakup of Pangea in the Laurasia–Gondwana rift system. Annual Review Earth and Planetary Science, 25, 337–401, https://doi.org/10.1146/annurev.earth.25.1.337
    [Google Scholar]
  58. Rowan, M.G.
    2014. Passive-margin salt basins: hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26, 154–182, https://doi.org/10.1111/bre.12043
    [Google Scholar]
  59. 2018. The South Atlantic and Gulf of Mexico salt basins: crustal thinning, subsidence and accommodation for salt and presalt strata. In: McClay, K.R. & Hammerstein, J.A. (eds) 2019. Passive Margins: Tectonics, Sedimentation and Magmatism. Geological Society, London, Special Publications, 476, https://doi.org/10.1144/SP476.6
    [Google Scholar]
  60. Sahabi, M., Aslanian, D. & Olivet, J.L.
    2004. A new starting point for the history of the central Atlantic. Comptes Rendus Geoscience, 336, 1041–1052, https://doi.org/10.1016/j.crte.2004.03.017
    [Google Scholar]
  61. Salisbury, M.H. & Keen, C.E.
    1993. Listric faults imaged in oceanic crust. Geology, 21, 117–120, https://doi.org/10.1130/0091-7613(1993)021<0117:LFIIOC>2.3.CO;2
    [Google Scholar]
  62. Schubert, G., Turcotte, D. & Olson, P.
    2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge.
    [Google Scholar]
  63. Sibuet, J.C., Rouzo, S. & Srivastava, S.
    2012. Plate tectonic reconstructions and paleogeographic maps of the central and north Atlantic oceans. Canadian Journal of Earth Sciences, 4, 1395–1415, https://doi.org/10.1139/e2012-071
    [Google Scholar]
  64. Sun, Z., Stock, J., Jian, Z., McIntosh, K., Alvarez-Zarikian, C.A. & Klaus, A.
    2016. Expedition 367/368 Scientific Prospectus: South China Sea Rifted Margin. International Ocean Discovery Program, La Jolla, CA, https://doi.org/10.14379/iodp.sp.367368.2016
    [Google Scholar]
  65. Tirel, C., Brun, J.P. & Sokoutis, D.
    2006. Extension of thickened and hot lithospheres: Inferences from laboratory modeling. Tectonics, 25, TC1005, https://doi.org/10.1029/2005TC001804
    [Google Scholar]
  66. Unternehr, P., Peron-Pinvidic, G., Manatschal, G. & Suttra, E.
    2010. Hyper-extended crust in the South Atlantic: in search of a model. Petroleum Geoscience, 16, 207–215, https://doi.org/10.1144/1354-079309-904
    [Google Scholar]
  67. van Avendonk, H.J.A., Lavier, L.L., Shillington, D.J. & Manatschal, G.
    2009. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 468, 131–148, https://doi.org/10.1016/j.tecto.2008.05.030
    [Google Scholar]
  68. van Keken, P.E., Spiers, C.J., van den Berg, A.P. & Muyzert, E.J.
    1993. The effective viscosity of rocksalt: implementation of steady-state creep laws in numerical models of salt diapirism. Tectonophysics, 225, 457–476, https://doi.org/10.1016/0040-1951(93)90310-G
    [Google Scholar]
  69. von Nicolai, C., Scheck-Wenderoth, M., Warsitzka, M., Schodt, N. & Andersen, J.
    2013. The deep structure of the South Atlantic Kwanza Basin – Insights from 3D structural and gravimetric modelling. Tectonophysics, 604, 139–152, https://doi.org/10.1016/j.tecto.2013.06.016
    [Google Scholar]
  70. Wade, J.A. & MacLean, B.C.
    1990. The geology of the southeastern margin of Canada. In: Keen, M.J. & Williams, G.L. (eds) Geology of the Continental Margin of Eastern Canada. Geological Survey of Canada, Geology of Canada, 2, 167–238.
    [Google Scholar]
  71. Wade, J.A., MacLean, B.C. & Williams, G.L.
    1995. Mesozoic and Cenozoic stratigraphy, eastern Scotian Shelf: new interpretations. Canadian Journal of Earth Sciences, 32, 1462–1473, https://doi.org/10.1139/e95-118
    [Google Scholar]
  72. Warren, J.K.
    2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98, 217–268, https://doi.org/10.1016/j.earscirev.2009.11.004
    [Google Scholar]
  73. Wernicke, B.
    1981. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22, 108–125, https://doi.org/10.1139/e85-009
    [Google Scholar]
  74. 1985. Low-angle normal faults in the basin and range province – nappe tectonics in an extending orogen. Nature, 291, 645–648,https://doi.org/10.1038/291645a0
    [Google Scholar]
  75. Westaway, R.
    1994. Present-day kinematics of the Middle East and easter Mediterranean. Journal of Geophysical Research: Solid Earth, 99, 12  071–12  090, https://doi.org/10.1029/94JB00335
    [Google Scholar]
  76. Westaway, R. & Bridgland, D.
    2007. Late Cenazoic uplift of southern Italy deduced from fluvial and marine sediments: Coupling between surface processes and lower-crustal flow. Quaternary International, 175, 86–124, https://doi.org/10.1016/j.quaint.2006.11.015
    [Google Scholar]
  77. Weston, J.F., MacRae, R.A., Ascoli, P., Cooper, M.K.E., Fensome, R.A., Shaw, D. & Williams, G.L.
    2012. A revised biostratigraphic and well-log sequence-stratigraphic framework for the Scotian Margin, offshore eastern Canada. Canadian Journal of Earth Sciences, 49, 1417–1462, https://doi.org/10.1139/e2012-070
    [Google Scholar]
  78. Wu, Y., Louden, K.E., Funck, T., Jackson, H.R. & Dehler, S.A.
    2006. Crustal structure of the central Nova Scotia margin off Eastern Canada. Geophysical Journal International, 166, 878–906, https://doi.org/10.1111/j.1365-246X.2006.02991.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-089
Loading
/content/journals/10.1144/petgeo2018-089
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error